精英家教网 > 高中数学 > 题目详情

【题目】某市环保部门对市中心每天的环境污染情况进行调查研究后,发现一天中环境综合污染指数与时刻(时)的关系为,其中是与气象有关的参数,且.若用每天的最大值为当天的综合污染指数,并记作

1)令,求的取值范围;

2)求的表达式,并规定当时为综合污染指数不超标,求当在什么范围内时,该市市中心的综合污染指数不超标.

【答案】(1);(2)

【解析】

1)当时,得到;当时,,利用对勾函数性质可求得,取并集得到结果;

2)由(1)可将化为,得到的单调性后,可知最大值在处取得;分别在两种情况下确定的最大值,即,由得到不等式,解不等式求得结果.

1)当时,

时,

(当且仅当,即时取等号),又时,

<>综上所述:

2)由(1)知:令,则

时,

时,单调递减;时,单调递增

①当时,

得:

②当时,

得:

综上所述:当时,综合污染指数不超标

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知四棱台的上下底面分别是边长为2和4的正方形, = 4且 ⊥底面,点的中点.

(Ⅰ)求证: ;

(Ⅱ)在边上找一点,使∥面

并求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆()的上顶点为,左焦点为,离心率为,直线与圆相切.

1)求椭圆的标准方程;

2)设过点且斜率存在的直线与椭圆相交于两点,线段的垂直平分线交轴于点,试判断是否为定值?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂用鲜牛奶在某台设备上生产AB两种奶制品.生产1A产品需鲜牛奶2吨,使用设备1小时,获利1 000元;生产1B产品需鲜牛奶1.5吨,使用设备1.5小时,获利1 200.要求每天B产品的产量不超过A产品产量的2倍,设备每天生产AB两种产品时间之和不超过12小时.假定每天可获取的鲜牛奶数量W(单位:吨)是一个随机变量,其分布列为

W

12

15

18

P

0.3

0.5

0.2

该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利Z(单位:元)是一个随机变量.

(I)Z的分布列和均值;

(II)若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10 000元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】伟大的变革庆祝改革开放40周年大型展览2019320日在中国国家博物馆闭幕,本次特展紧扣改革开放40年光辉历程的主线,多角度、全景式描绘了我国改革开放40年波澜壮阔的历史画卷.据统计,展览全程呈现出持续火爆的状态,现场观众累计达423万人次,参展人数屡次创造国家博物馆参观纪录,网上展馆点击浏览总量达4.03亿次.

下表是20192月参观人数(单位:万人)统计表

日期

1

2

3

4

5

6

7

8

9

10

11

12

13

14

人数

3.0

3.1

2.5

2.3

5.4

6.8

6.2

6.7

5.5

4.9

3.2

3.0

2.7

2.5

日期

15

16

17

18

19

20

21

22

23

24

25

26

27

28

人数

2.4

2.9

3.2

2.8

2.9

2.3

3.0

2.9

3.1

3.0

3.1

3.1

3.1

3.0

根据表中数据回答下列问题:

1)请将20192月前半月(114日)和后半月(1528日)参观人数统计对比茎叶图填补完整,并通过茎叶图比较两组数据方差的大小(不要求计算出具体值,得出结论即可);

2)将20192月参观人数数据用该天的对应日期作为样本编号,现从中抽样7天的样本数据.若抽取的样本编号是以4为公差的等差数列,且数列的第4项为15,求抽出的这7个样本数据的平均值;

3)根据国博以往展览数据及调查统计信息可知,单日入馆参观人数为03(含3,单位:万人)时,参观者的体验满意度最佳,在从(2)中抽出的样本数据中随机抽取两天的数据,求这两天参观者的体验满意度均为最住的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆)的左焦点为上一点,且轴垂直,分别为椭圆的右顶点和上顶点,且,且的面积是,其中是坐标原点.

1)求椭圆的方程.

2)若过点的直线互相垂直,且分别与椭圆交于点四点,求四边形的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知圆,圆与圆外切于点,且过点,则圆的标准方程为_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,已知四边形是边长为的正方形,点的中点,点在底面上的射影为点,点在棱上,且四棱锥的体积为.

1)若点的中点,求证:平面平面

2)若二面角的余弦值为,求直线与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案