精英家教网 > 高中数学 > 题目详情
已知函数(其中是实数).
(Ⅰ)求的单调区间;
(Ⅱ)若,且有两个极值点,求的取值范围.
(其中是自然对数的底数)
(Ⅰ)当,即时,的增区间为,当时,的增区间为,减区间为;
(Ⅱ)

试题分析:(Ⅰ)求函数的单调区间,首先确定定义域,可通过单调性的定义,或求导确定单调区间,由于,含有对数函数,可通过求导来确定单调区间,对函数求导得,有基本不等式知,,需讨论,当,即时,的增区间为,当时,令,解出就能求出函数的单调区间;(Ⅱ) 若,且有两个极值点,求的取值范围,由(Ⅰ)可知,内递减,得 ,且,得,又由(Ⅰ)可知,,即,由,可求出,再由,判断它的单调性,从而求出范围.
试题解析:(Ⅰ)                          1分
,即时,的增区间为             3分
②当时,  5分
的增区间为,减区间为  7分
(Ⅱ) 由(Ⅰ)可知,内递减,      8分
 
上递减,       10分
      12分

上递减                            14分
               15分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数,其中a>0.
(Ⅰ)求函数的单调区间;
(Ⅱ)若直线是曲线的切线,求实数a的值;
(Ⅲ)设,求在区间上的最大值(其中e为自然对的底数)。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数 .
(Ⅰ)若函数在区间其中上存在极值,求实数的取值范围;
(Ⅱ)如果当时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(I)若,求函数的单调区间;
(Ⅱ)求证:
(Ⅲ)若函数的图象在点处的切线的倾斜角为,对于任意的,函数的导函数)在区间上总不是单调函数,求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(Ⅰ)讨论函数的单调性;
(Ⅱ)设,证明:对任意,总存在,使得.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数
(1)当时,函数取得极值,求的值;
(2)当时,求函数在区间[1,2]上的最大值;
(3)当时,关于的方程有唯一实数解,求实数的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知x=1是函数的一个极值点,
(Ⅰ)求a的值;
(Ⅱ)当时,证明:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数为自然对数的底,
(1)求的最值;
(2)若关于方程有两个不同解,求的范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数,则  

查看答案和解析>>

同步练习册答案