精英家教网 > 高中数学 > 题目详情

【题目】设函数.

(1)试讨论函数的单调性;

(2)设,记,当时,若方程有两个不相等的实根 ,证明.

【答案】(1)见解析;(2)见解析.

【解析】试题分析:

(1)求解函数的导函数,分类讨论可得:

①若时,当时,函数单调递减,当时,函数单调递增;

②若时,函数单调递增;

③若时,当时,函数单调递减,当时,函数单调递增.

(2)构造新函数 ,结合新函数的性质即可证得题中的不等式.

试题解析:

(1)由,可知 .

因为函数的定义域为,所以,

①若时,当时, ,函数单调递减,当时, ,函数单调递增;

②若时,当内恒成立,函数单调递增;

③若时,当时, ,函数单调递减,当时, ,函数单调递增.

(2)证明:由题可知

所以 .

所以当时, ;当时, ;当时, .

欲证,只需证,又,即单调递增,故只需证明.

是方程的两个不相等的实根,不妨设为

两式相减并整理得

从而

故只需证明

.

因为

所以(*)式可化为

.

因为,所以

不妨令,所以得到 .

,所以,当且仅当时,等号成立,因此单调递增.

因此

得证,

从而得证.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】直线y=a分别与曲线y=2(x+1),y=x+lnx交于A、B,则|AB|的最小值为( )
A.3
B.2
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}满足a1=a,an+1=can+1﹣c(n∈N*),其中a,c为实数,且c≠0. (Ⅰ)求数列{an}的通项公式;
(Ⅱ)设 ,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列关系式中正确的是(
A.sin 11°<cos 10°<sin 168°
B.sin 168°<sin 11°<cos 10°
C.sin 11°<sin 168°<cos 10°
D.sin 168°<cos 10°<sin 11°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为缓解高三学生的高考压力,经常举行一些心理素质综合能力训练活动,经过一段时间的训练后从该年级800名学生中随机抽取100名学生进行测试,并将其成绩分为五个等级,统计数据如图所示(视频率为概率),根据以上抽样调查数据,回答下列问题:

(1)试估算该校高三年级学生获得成绩为的人数;

(2)若等级分别对应100分、90分、80分、70分、60分,学校要求平均分达90分以上为“考前心理稳定整体过关”,请问该校高三年级目前学生的“考前心理稳定整体”是否过关?

(3)为了解心理健康状态稳定学生的特点,现从两种级别中,用分层抽样的方法抽取11个学生样本,再从中任意选取3个学生样本分析,求这3个样本为级的个数的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆M的圆心M在x轴上,半径为1,直线 ,被圆M所截的弦长为 ,且圆心M在直线l的下方.
(I)求圆M的方程;
(II)设A(0,t),B(0,t+6)(﹣5≤t≤﹣2),若圆M是△ABC的内切圆,求△ABC的面积S的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=x+ (x≠﹣1)的值域为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=3x2﹣2x,数列{an}的前n项和为Sn , 点(n,Sn)(n∈N*)均在函数y=f(x)的图像上.
(1)求数列{an}的通项公式;
(2)设bn= ,Tn是数列{bn}的前n项和,求使得Tn 对所有n∈N*都成立的最小正整数m.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l1:x+my+6=0,l2:(m﹣2)x+3y+2m=0,求:
(1)若l1⊥l2 , 求m的值;
(2)若l1∥l2 , 求m的值.

查看答案和解析>>

同步练习册答案