精英家教网 > 高中数学 > 题目详情

【题目】2017年起,全国各省市陆续实施了新高考,许多省市采用了“”的选科模式,即:考生除必考的语数外三科外,再从物理化学生物历史地理政治六个学科中,任意选取三科参加高考,为了调查新高考中考生的选科情况,某地调查小组对某中学进行了一次调查,研究考生选择化学与选择物理是否有关.已知在调查数据中,选物理的考生与不选物理的考生人数相同,其中选物理且选化学的人数占选物理人数的,在不选物理的考生中,选化学与不选化学的人数比为

1)若在此次调查中,选物理未选化学的考生有100人,将选物理且选化学的人数占选化学总人数的比作为概率,从该中学选化学的考生中随机抽取4人,记这4人中选物理且选择化学的考生人数为,求的分布列(用排列数组合数表示即可)和数学期望.

2)若研究得到在犯错误概率不超过001的前提下,认为选化学与选物理有关,则选物理且选化学的人数至少有多少?(单位:百人,精确到001)

附:,其中

0100

0050

0010

0001

2706

3841

6635

10828

【答案】1)分布列见解析,数学期望为.(2)至少537人.

【解析】

1)分别计算出选物理且选化学和选化学不选物理的人数,利用超几何分布的性质即可得分布列和期望,即可得解;

2)设选物理又选化学的人数为,列出联表,计算出,令解不等式即可得解.

1)由题意列联表如图:

选化学

不选化学

合计(人数)

选物理

400

100

500

不选物理

50

450

500

合计(人数)

450

550

1000

所以

则分布列为

0

1

2

3

4

由题意选物理且选化学的人数占选化学总人数的比为,且符合超几何分布,

所以

2)设选物理又选化学的人数为,则列联表如下:

选化学

不选化学

合计(人数)

选物理

不选物理

合计(人数)

所以:

在犯错误概率不超过0.01的前提下,则,即

即:

所以选物理又选化学的人数至少有5.37(百人),即至少537人.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.

(1)求曲线的普通方程和直线的直角坐标方程;

(2)射线的极坐标方程为,若射线与曲线的交点为,与直线的交点为,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,准线为上一点,直线与抛物线交于两点,若,则( )

A. B. 8 C. 16 D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于正整数,如果个整数满足

,则称数组的一个正整数分拆”.均为偶数的正整数分拆的个数为均为奇数的正整数分拆的个数为.

()写出整数4的所有正整数分拆”;

()对于给定的整数,设的一个正整数分拆,且,求的最大值;

()对所有的正整数,证明:;并求出使得等号成立的的值.

(:对于的两个正整数分拆,当且仅当时,称这两个正整数分拆是相同的.)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于曲线,给出下列三个结论:

曲线关于原点对称,但不关于轴、轴对称;

曲线恰好经过4个整点(即横、纵坐标均为整数的点);

曲线上任意一点到原点的距离都不大于.

其中,正确结论的序号是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解一个智力游戏是否与性别有关,从某地区抽取男女游戏玩家各200请客,其中游戏水平分为高级和非高级两种.

1)根据题意完善下列列联表,并根据列联表判断是否有99%以上的把握认为智力游戏水平高低与性别有关?

性别

高级

非高级

合计

40

140

合计

2)按照性别用分层抽样的方法从这些人中抽取10人,从这10人中抽取3人作为游戏参赛选手;

若甲入选了10人名单,求甲成为参赛选手的概率;

设抽取的3名选手中女生的人数为,求的分布列和期望.

附表:,其中

0.010

0.05

0.001

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,得到甲、乙两位学生成绩的茎叶图.

1)现要从中选派一人参加数学竞赛,对预赛成绩的平均值和方差进行分析,你认为哪位学生的成绩更稳定?请说明理由;

2)若将频率视为概率,求乙同学在一次数学竞赛中成绩高于84分的概率;

3)求在甲同学的8次预赛成绩中,从不小于80分的成绩中随机抽取2个成绩,列出所有结果,并求抽出的2个成绩均大于85分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年国际篮联篮球世界杯将于2019831日至915日在中国的北京、广州、南京、上海、武汉、深圳、佛山、东莞八座城市举行.为了宣传国际篮联篮球世界杯,某大学从全校学生中随机抽取了120名学生,对是否会收看该国际篮联篮球世界杯赛事的情况进行了问卷调查,统计数据如下:

会收看

不会收看

男生

60

20

女生

20

20

1)根据上表说明,能否有99%的把握认为是否会收看该国际篮联篮球世界杯赛事与性别有关?

2)甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为,且乙投球3次均未命中的概率为.

i)求乙投球的命中率

ii)若甲投球1次,乙投球2次,两人共命中的次数记为,求的分布列和数学期望.

附:,其中

0.10

0.05

0.025

0.010

0.005

2.706

3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在底面为菱形的四棱柱中,平面.

1)证明:平面

2)求二面角的正弦值.

查看答案和解析>>

同步练习册答案