【题目】自2017年起,全国各省市陆续实施了新高考,许多省市采用了“”的选科模式,即:考生除必考的语数外三科外,再从物理化学生物历史地理政治六个学科中,任意选取三科参加高考,为了调查新高考中考生的选科情况,某地调查小组对某中学进行了一次调查,研究考生选择化学与选择物理是否有关.已知在调查数据中,选物理的考生与不选物理的考生人数相同,其中选物理且选化学的人数占选物理人数的,在不选物理的考生中,选化学与不选化学的人数比为.
(1)若在此次调查中,选物理未选化学的考生有100人,将选物理且选化学的人数占选化学总人数的比作为概率,从该中学选化学的考生中随机抽取4人,记这4人中选物理且选择化学的考生人数为,求的分布列(用排列数组合数表示即可)和数学期望.
(2)若研究得到在犯错误概率不超过0.01的前提下,认为选化学与选物理有关,则选物理且选化学的人数至少有多少?(单位:百人,精确到0.01)
附:,其中.
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
【答案】(1)分布列见解析,数学期望为.(2)至少537人.
【解析】
(1)分别计算出选物理且选化学和选化学不选物理的人数,利用超几何分布的性质即可得分布列和期望,即可得解;
(2)设选物理又选化学的人数为,列出联表,计算出,令解不等式即可得解.
(1)由题意列联表如图:
选化学 | 不选化学 | 合计(人数) | |
选物理 | 400 | 100 | 500 |
不选物理 | 50 | 450 | 500 |
合计(人数) | 450 | 550 | 1000 |
所以,,,
,,
则分布列为
0 | 1 | 2 | 3 | 4 | |
由题意选物理且选化学的人数占选化学总人数的比为,且符合超几何分布,
所以.
(2)设选物理又选化学的人数为,则列联表如下:
选化学 | 不选化学 | 合计(人数) | |
选物理 | |||
不选物理 | |||
合计(人数) |
所以:.
在犯错误概率不超过0.01的前提下,则,即,
即:.
所以选物理又选化学的人数至少有5.37(百人),即至少537人.
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.
(1)求曲线的普通方程和直线的直角坐标方程;
(2)射线的极坐标方程为,若射线与曲线的交点为,与直线的交点为,求线段的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于正整数,如果个整数满足,
且,则称数组为的一个“正整数分拆”.记均为偶数的“正整数分拆”的个数为均为奇数的“正整数分拆”的个数为.
(Ⅰ)写出整数4的所有“正整数分拆”;
(Ⅱ)对于给定的整数,设是的一个“正整数分拆”,且,求的最大值;
(Ⅲ)对所有的正整数,证明:;并求出使得等号成立的的值.
(注:对于的两个“正整数分拆”与,当且仅当且时,称这两个“正整数分拆”是相同的.)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】关于曲线,给出下列三个结论:
① 曲线关于原点对称,但不关于轴、轴对称;
② 曲线恰好经过4个整点(即横、纵坐标均为整数的点);
③ 曲线上任意一点到原点的距离都不大于.
其中,正确结论的序号是________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了了解一个智力游戏是否与性别有关,从某地区抽取男女游戏玩家各200请客,其中游戏水平分为高级和非高级两种.
(1)根据题意完善下列列联表,并根据列联表判断是否有99%以上的把握认为智力游戏水平高低与性别有关?
性别 | 高级 | 非高级 | 合计 |
女 | 40 | ||
男 | 140 | ||
合计 |
(2)按照性别用分层抽样的方法从这些人中抽取10人,从这10人中抽取3人作为游戏参赛选手;
若甲入选了10人名单,求甲成为参赛选手的概率;
设抽取的3名选手中女生的人数为,求的分布列和期望.
附表:,其中.
0.010 | 0.05 | 0.001 | |
6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,得到甲、乙两位学生成绩的茎叶图.
(1)现要从中选派一人参加数学竞赛,对预赛成绩的平均值和方差进行分析,你认为哪位学生的成绩更稳定?请说明理由;
(2)若将频率视为概率,求乙同学在一次数学竞赛中成绩高于84分的概率;
(3)求在甲同学的8次预赛成绩中,从不小于80分的成绩中随机抽取2个成绩,列出所有结果,并求抽出的2个成绩均大于85分的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年国际篮联篮球世界杯将于2019年8月31日至9月15日在中国的北京、广州、南京、上海、武汉、深圳、佛山、东莞八座城市举行.为了宣传国际篮联篮球世界杯,某大学从全校学生中随机抽取了120名学生,对是否会收看该国际篮联篮球世界杯赛事的情况进行了问卷调查,统计数据如下:
会收看 | 不会收看 | |
男生 | 60 | 20 |
女生 | 20 | 20 |
(1)根据上表说明,能否有99%的把握认为是否会收看该国际篮联篮球世界杯赛事与性别有关?
(2)甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为与,且乙投球3次均未命中的概率为.
(i)求乙投球的命中率;
(ii)若甲投球1次,乙投球2次,两人共命中的次数记为,求的分布列和数学期望.
附:,其中,
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com