【题目】已知直线: ,圆:
(1)求证:直线与圆总相交;
(2)求出相交的弦长的最小值及相应的值;
科目:高中数学 来源: 题型:
【题目】阅读与探究
人教A版《普通高中课程标准实验教科书 数学4(必修)》在第一章的小结中写到:
将角放在直角坐标系中讨论不但使角的表示有了统一的方法,而且使我们能够借助直角坐标系中的单位圆,建立角的变化与单位圆上点的变化之间的对应关系,从而用单位圆上点的纵坐标、横坐标来表示圆心角的正弦函数、余弦函数.因此,正弦函数、余弦函数的基本性质与圆的几何性质(主要是对称性)之间存在着非常紧密的联系.例如,和单位圆相关的“勾股定理”与同角三角函数的基本关系有内在的一致性;单位圆周长为与正弦函数、余弦函数的周期为是一致的;圆的各种对称性与三角函数的奇偶性、诱导公式等也是一致的等等.因此,三角函数的研究过程能够很好地体现数形结合思想.
依据上述材料,利用正切线可以讨论研究得出正切函数的性质.
比如:由图1.2-7可知,角的终边落在四个象限时均存在正切线;角的终边落在轴上时,其正切线缩为一个点,值为;角的终边落在轴上时,其正切线不存在;所以正切函数的定义域是.
(1)请利用单位圆中的正切线研究得出正切函数的单调性和奇偶性;
(2)根据阅读材料中途1.2-7,若角为锐角,求证: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知过点(0,1)的直线与圆x2+y2=4相交于A、B两点,若 ,则点P的轨迹方程是( )
A.
B.x2+(y﹣1)2=1
C.
D.x2+(y﹣1)2=2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数, . 在上有最大值9,最小值4.
(1)求实数的值;
(2)若不等式在上恒成立,求实数的取值范围;
(3)若方程有三个不同的实数根,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点A是抛物线M:y2=2px(p>0)与圆C:x2+(y﹣4)2=a2在第一象限的公共点,且点A到抛物线M焦点F的距离为a,若抛物线M上一动点到其准线与到点C的距离之和的最小值为2a,O为坐标原点,则直线OA被圆C所截得的弦长为( )
A.2
B.2
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“a=﹣1”是“直线ax+3y+2=0与直线x+(a﹣2)y+1=0平行”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com