精英家教网 > 高中数学 > 题目详情
已知α、β、γ都是锐角,且cos2α+cos2β+cos2γ=1,求证:tanαtanβtanγ≥2
2
分析:α、β、γ都是锐角,可以看做长方体的一条对角线(长为1)与相邻3个面的夹角,
用长方体的一顶点上3条棱abc表示tanα、tanβ、tanγ,再用均值不等式a2+b2≥2ab.
解答:解:通过观察、联想:在长方体中,a2+b2+c2=l2?(
a
l
)2+(
b
l
)2+(
c
l
)2=1

∵α、β、γ是锐角,∴令
a
l
=cosα,
b
l
=cosβ,
c
l
=cosγ
∴tanα=
b2+c2
a
2
bc
a
,tanβ
2
ac
b
,tanγ
2
ab
c

∴tanαtanβtanγ≥2
2
点评:本题体现了划归转化的数学思想方法,注意均值不等式a2+b2≥2ab的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知四边形ABCD为菱形,AB=6,∠BAD=60°,两个正三棱锥P-ABD、S-BCD(底面是正三角形且顶点在底面上的射影是底面正三角形的中心)的侧棱长都相等,如图,E、M、N分别在AD、
AB、AP上,且AM=AE=2,AN=
13
AP,MN⊥PE

(Ⅰ)求证:PB⊥平面PAD;
(Ⅱ)求平面BPS与底面ABCD所成锐二面角的平面角的正切
值;
(Ⅲ)求多面体SPABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四边形为菱形,,两个正三棱锥(底面是正三角形且顶点在底面上的射影是底面正三角形的中心)的侧棱长都相等,点分别在上,且.

 (Ⅰ)求证:;

(Ⅱ)求平面与底面所成锐二面角的平面角的正切值;

(Ⅲ)求多面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知四边形ABCD为菱形,AB=6,∠BAD=60°,两个正三棱锥P-ABD、S-BCD(底面是正三角形且顶点在底面上的射影是底面正三角形的中心)的侧棱长都相等,如图,E、M、N分别在AD、
AB、AP上,且数学公式
(Ⅰ)求证:PB⊥平面PAD;
(Ⅱ)求平面BPS与底面ABCD所成锐二面角的平面角的正切
值;
(Ⅲ)求多面体SPABC的体积.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年安徽省六校联考数学试卷(文科)(解析版) 题型:解答题

已知四边形ABCD为菱形,AB=6,∠BAD=60°,两个正三棱锥P-ABD、S-BCD(底面是正三角形且顶点在底面上的射影是底面正三角形的中心)的侧棱长都相等,如图,E、M、N分别在AD、
AB、AP上,且
(Ⅰ)求证:PB⊥平面PAD;
(Ⅱ)求平面BPS与底面ABCD所成锐二面角的平面角的正切
值;
(Ⅲ)求多面体SPABC的体积.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年安徽省六校高三联考数学试卷(理科)(解析版) 题型:解答题

已知四边形ABCD为菱形,AB=6,∠BAD=60°,两个正三棱锥P-ABD、S-BCD(底面是正三角形且顶点在底面上的射影是底面正三角形的中心)的侧棱长都相等,如图,E、M、N分别在AD、
AB、AP上,且
(Ⅰ)求证:PB⊥平面PAD;
(Ⅱ)求平面BPS与底面ABCD所成锐二面角的平面角的正切
值;
(Ⅲ)求多面体SPABC的体积.

查看答案和解析>>

同步练习册答案