精英家教网 > 高中数学 > 题目详情

如图所示,正方形AA1D1D与矩形ABCD所在平面互相垂直,AB=2AD=2,点E为AB的中点,

(1).求证:D1E⊥A1D;
(2).在线段AB上是否存在点M,使二面角D1-MC-D的大小为?,若存在,求出AM的长,若不存在,说明理由

(1)证明过程详见解析;(2).

解析试题分析:本题主要考查线面的位置关系、二面角等基础知识,意在考查考生的空间想象能力推理论证能力.第一问,利用为正方形,得到,由于平面与平面ABCD互相垂直,利用面面垂直的性质,得平面,利用线面垂直的性质得,利用线面垂直的判断,得
平面,再利用线面垂直的性质得;第二问,法一:作出辅助线,则利用射影定理得,则即为二面角的平面角,则,在中求出DN,在中求出,从而得到,最后在中求出BM,即得到AM的长;法二:利用向量法,根据已知条件先求出平面MCD和平面的法向量,利用夹角公式,通过解方程得AM的长.
试题解析:(1)连结于F,
∵四边形为正方形,

∵正方形与矩形ABCD所在平面互相垂直,交线为
平面,又平面

,∴平面
平面,∴.                 6分
(2)存在满足条件的.
【解法一】假设存在满足条件的点,过点于点,连结,则

所以为二面角的平面角,
9分
所以
中,所以
又在中,,所以,∴
中,

故在线段

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,AB=AD,∠BAD=90°,M,N,G分别是BD,BC,AB的中点,将等边△BCD沿BD折叠到△BC′D的位置,使得AD⊥C′B.
(1)求证:平面GNM∥平面ADC′.
(2)求证:C′A⊥平面ABD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,三棱柱中,平面.以
为邻边作平行四边形,连接

(1)求证:∥平面 ;
(2)求直线与平面所成角的正弦值;
(3)线段上是否存在点,使平面与平面垂直?若存在,求出的长;若
不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱柱中,,顶点在底面上的射影恰为点
(1)证明:平面平面
(2 )若点的中点,求出二面角的余弦值.

(1)证明:平面平面
(2)若点的中点,求出二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱中, , ,,点的中点.四面体的体积是,求异面直线所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在平面内,,P为平面外一个动点,且PC=

(1)问当PA的长为多少时,
(2)当的面积取得最大值时,求直线BC与平面PAB所成角的大小

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱柱中,侧面为菱形,且的中点.

(1)求证:平面平面
(2)求证:∥平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,正三棱柱的底面边长是,侧棱长是的中点.

(1)求证:∥平面
(2)求二面角的大小;
(3)在线段上是否存在一点,使得平面平面,若存在,求出的长;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在正三棱柱ABCA1B1C1中,点D是BC的中点,BC=BB1.
 
(1)若P是CC1上任一点,求证:AP不可能与平面BCC1B1垂直;
(2)试在棱CC1上找一点M,使MB⊥AB1.

查看答案和解析>>

同步练习册答案