精英家教网 > 高中数学 > 题目详情

【题目】已知函数 (其中 ),且函数的图象在点处的切线与函数的图象在点处的切线重合.

(1)求实数 的值;

(2)记函数,是否存在最小的正常数,使得当时,对于任意正实数,不等式恒成立?给出你的结论,并说明结论的合理性.

【答案】(1) ;(2) 题目所要求的最小的正常数就是,即存在最小正常数,当时,对于任意正实数,不等式恒成立.

【解析】试题分析:1,则在点处切线方程为

,则在点处切线方程为两直线重合所以得解(2根据(1)知,则 ,即,即,构造函数,则问题就是求恒成立,进行求导研究单调性得上是增函数,在上是减函数,而

则函数在区间上各有一个零点,设为),

从而可知函数在区间上单调递减,在区间上单调递增,

时, ;当时, .还有是函数的极大值,也是最大值.题目要找的理由如下;

试题解析:

(1)∵,则在点处切线方程为

,则在点处切线方程为. 

解得

(2)根据(1)知,则

,即,即

构造函数,则问题就是求恒成立,

,令

,显然是减函数,又,所以上是增函数,

上是减函数,

则函数在区间上各有一个零点,设为),

并且有在区间上, ,即

在区间上, ,即

从而可知函数在区间上单调递减,在区间上单调递增,

时, ;当时,

还有是函数的极大值,也是最大值.题目要找的,理由:

时,对于任意非零正数 ,而上单调递减,所以一定恒成立,即题目要求的不等式恒成立;

时,取,显然,题目要求的不等式不恒成立,说明不能比小;

综上可知,题目所要求的最小的正常数就是,即存在最小正常数,当时,对于任意正实数,不等式恒成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知f(x)=2x2﹣3x+1,g(x)=ksin(x﹣ )(k≠0).
(1)设f(x)的定义域为[0,3],值域为A; g(x)的定义域为[0,3],值域为B,且AB,求实数k的取值范围.
(2)若方程f(sinx)+sinx﹣a=0在[0,2π)上恰有两个解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】心理学家分析发现视觉和空间能力与性别有关,某数学兴趣小组为了验证这个结论,从兴趣小组中按分层抽样的方法抽取50名同学(男30女20),给所有同学几何题和代数题各一题,让各位同学自由选择一道题进行解答.选题情况如表:(单位:人)

几何题

代数题

总计

男同学

22

8

30

女同学

8

12

20

总计

30

20

50


(1)能否据此判断有97.5%的把握认为视觉和空间能力与性别有关?
(2)经过多次测试后,甲每次解答一道几何题所用的时间在5﹣7分钟,乙每次解答一道几何题所用的时间在6﹣8分钟,现甲、乙各解同一道几何题,求乙比甲先解答完的概率.
(3)现从选择做几何题的8名女生中任意抽取两人对她们的答题情况进行全程研究,记甲、乙两女生被抽到的人数为X,求X的分布列及数学期望E(X).
附表及公式:

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

K2=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形均为菱形, ,且.

(1)求证: 平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正数数列{an}的前n项和为Sn , 已知对于任意的n∈Z+ , 均有Sn与1正的等比中项等于an与1的等差中项.
(1)试求数列{an}的通项公式;
(2)设bn= ,数列{bn}的前n项和为Tn , 求证:Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若等比数列{an}的前n项和Sn=2016n+t(t为常数),则a1的值为(
A.2013
B.2014
C.2015
D.2016

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的三个内角A、B、C所对的边的长分别为a、b、c,设向量 =(a﹣c,a﹣b), =(a+b,c),且
(1)求B;
(2)若a=1,b= ,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】预计某地区明年从年初开始的前 个月内,对某种商品的需求总量 (万件)近似满足: ,且
(1)写出明年第 个月的需求量 (万件)与月份 的函数关系式,并求出哪个月份的需求量超过 万件;
(2)如果将该商品每月都投放到该地区 万件(不包含积压商品),要保证每月都满足供应, 应至少为多少万件?(积压商品转入下月继续销售)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为( )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案