精英家教网 > 高中数学 > 题目详情
已知椭圆C经过点M,其左顶点为N,两个焦点为(-1,0),(1,0),平行于MN的直线l交椭圆于A,B两个不同的点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)求证:直线MA,MB与x轴始终围成一个等腰三角形.

【答案】分析:(Ⅰ)由题意设出椭圆方程,把点M的坐标代入椭圆方程,结合隐含条件a2=b2+c2可求解a2,b2,则椭圆的方程可求;
(Ⅱ)由椭圆方程求出顶点N的坐标,求出MN的斜率,设出直线l的斜截式方程,和椭圆联立后利用根与系数的关系求出A,B两点的横坐标的和与积,由两点式写出MA和MB的斜率,作和后化为含有直线l的截距的代数式,整理得到结果为0,所以结论得证.
解答:(Ⅰ)解:设椭圆的方程为(a>b>0),因为过点
所以 ①
又c=1,所以a2=b2+c2=b2+1 ②
由①②可得a2=4,b2=3.
故椭圆C的方程为
(Ⅱ)证明:由(Ⅰ)知,,所以
故设直线l:
联立,得x2+mx+m2-3=0.


=
==1-1=0.
故直线MA,MB与x轴始终围成一个等腰三角形.
点评:本题考查了椭圆的标准方程,考查了直线与圆锥曲线的关系,考查了数学转化思想方法和学生的计算能力,属难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•临沂三模)已知椭圆C经过点M(1,
32
)
,其左顶点为N,两个焦点为(-1,0),(1,0),平行于MN的直线l交椭圆于A,B两个不同的点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)求证:直线MA,MB与x轴始终围成一个等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C经过点M(1,
32
),两个焦点是F1(-1,0)和F2(1,0)
(I)求椭圆C的方程;
(II)若A、B为椭圆C的左、右顶点,P是椭圆C上异于A、B的动点,直线AP 与椭圆在点B处的切线交于点D,当直线AP绕点A转动时,求证:以BD为直径的圆与直线的圆与直线PF2相切.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年辽宁省丹东市四校协作体高三摸底(零诊)数学试卷(理科)(解析版) 题型:解答题

已知椭圆C经过点M(1,),两个焦点是F1(-1,0)和F2(1,0)
(I)求椭圆C的方程;
(II)若A、B为椭圆C的左、右顶点,P是椭圆C上异于A、B的动点,直线AP 与椭圆在点B处的切线交于点D,当直线AP绕点A转动时,求证:以BD为直径的圆与直线的圆与直线PF2相切.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年辽宁省丹东市四校协作体高三摸底(零诊)数学试卷(文科)(解析版) 题型:解答题

已知椭圆C经过点M(1,),两个焦点是F1(-1,0)和F2(1,0)
(I)求椭圆C的方程;
(II)若A、B为椭圆C的左、右顶点,P是椭圆C上异于A、B的动点,直线AP 与椭圆在点B处的切线交于点D,当直线AP绕点A转动时,求证:以BD为直径的圆与直线的圆与直线PF2相切.

查看答案和解析>>

同步练习册答案