精英家教网 > 高中数学 > 题目详情
4.在边长为1的正方形ABCD中,向量$\overrightarrow{DE}$=$\frac{1}{2}$$\overrightarrow{DC}$,$\overrightarrow{BF}$=$\frac{1}{3}$$\overrightarrow{BC}$,则向量$\overrightarrow{AE}$,$\overrightarrow{AF}$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{5π}{12}$

分析 以A为坐标原点,以AB为x轴,以AD为x轴,建立直角坐标系,根据向量的夹角的公式计算即可

解答 解:设向量$\overrightarrow{AE}$,$\overrightarrow{AF}$的夹角为θ,
以A为坐标原点,以AB为x轴,以AD为x轴,建立直角坐标系,
∴A(0,0),B(1.0),C(1,1),D(0,1),
∵向量$\overrightarrow{DE}$=$\frac{1}{2}$$\overrightarrow{DC}$,$\overrightarrow{BF}$=$\frac{1}{3}$$\overrightarrow{BC}$,
∴E($\frac{1}{2}$,1),F(1,$\frac{1}{3}$),
∴$\overrightarrow{AE}$=($\frac{1}{2}$,1),$\overrightarrow{AF}$=(1,$\frac{1}{3}$),
∴|$\overrightarrow{AE}$|=$\sqrt{\frac{5}{4}}$,$\overrightarrow{AF}$=$\sqrt{\frac{10}{9}}$,$\overrightarrow{AE}$•$\overrightarrow{AF}$=$\frac{1}{2}$+$\frac{1}{3}$=$\frac{5}{6}$,
∴cosθ=$\frac{\overrightarrow{AE}•\overrightarrow{AF}}{|\overrightarrow{AE}|•|\overrightarrow{AF}|}$=$\frac{\frac{5}{6}}{\sqrt{\frac{5}{4}×\frac{10}{9}}}$=$\frac{\sqrt{2}}{2}$,
∴θ=$\frac{π}{4}$,
故选:B

点评 本题考查了向量的坐标运算和向量的夹角公式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.请写出“好货不便宜”的等价命题:便宜没好货.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=cos2x+2sinx
(Ⅰ)求f(-$\frac{π}{6}$)的值;
(Ⅱ)求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=2sin(ωx-$\frac{π}{6}$)-1(ω>0)最小正周期是π,则函数f(x)的单调递增区间是[kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$],k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合U={1,2,3,4,5,6},M={1,5},P={2,4},则下列结论正确的是(  )
A.1∈∁U(M∪P)B.2∈∁U(M∪P)C.3∈∁U(M∪P)D.6∉∁U(M∪P)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知△ABC中,点A(-2,0),B(2,0),C(x,1)
(i)若∠ACB是直角,则x=$±\sqrt{3}$
(ii)若△ABC是锐角三角形,则x的取值范围是(-2,-$\sqrt{3}$)∪(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\left\{\begin{array}{l}{x=2cosφ}\\{y=sinφ}\end{array}\right.$(φ为参数),A,B是C上的动点,且满足OA⊥OB(O为坐标原点),以原点O为极点,以x轴的正半轴为极轴建立极坐标系,点D的极坐标为(-4,$\frac{π}{3}$).
(1)求线段AD的中点M的轨迹E的普通方程;
(2)利用椭圆C的极坐标方程证明$\frac{1}{|OA{|}^{2}}$+$\frac{1}{|OB{|}^{2}}$为定值,并求△AOB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设函数f(x)=cosωx(ω>0),将y=f(x)的图象向右平移$\frac{π}{4}$个单位长度后,所得的图象与原图象重合,则ω的最小值等于(  )
A.$\frac{1}{2}$B.2C.8D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知$tanα=\frac{1}{7},sinβ=\frac{{\sqrt{10}}}{10}$分别在下列条件下求α+2β的值:
(1)$α∈({0,\frac{π}{2}}),β∈({0,\frac{π}{2}})$
(2)$α∈({-π,0}),β∈({0,\frac{π}{2}})$.

查看答案和解析>>

同步练习册答案