精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)= 为奇函数.
(1)则a=
(2)函数g(x)=f(x)﹣ 的值域为

【答案】
(1)1
(2)(﹣1,0)∪(0,1)
【解析】解:(1)根据题意,函数f(x)= ,则有f(﹣x)= = , 若函数f(x)为奇函数,则有 =﹣
分析可得,a=1,(2)由(1)可得,a=1,则f(x)=
则g(x)=f(x)﹣ = =1+
其中x≠0,
则g(﹣x)= + = + =﹣( )=﹣g(x),则函数g(x)为奇函数,
当x>0时,函数为增函数,当x→+∞时,g(x)→1,
即当x>0时,0<g(x)<1,∵函数是奇函数,
∴当x<0时,﹣1<g(x)<0,
综上函数的值域为(﹣1,0)∪(0,1),
所以答案是:1,(﹣1,0)∪(0,1),

【考点精析】通过灵活运用函数奇偶性的性质,掌握在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知命题p:函数y=log0.5(x2+2x+a)的值域R,命题q:函数y=x2a5在(0,+∞)上是减函数.若p或q为真命题,p且q为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设递增的等比数列{an}的前n项和为Sn , 已知2(an+an+2)=5an+1 , 且
(1)求数列{an}通项公式及前n项和为Sn
(2)设 ,求数列{bn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某人第一天8:00从A地开车出发,6小时后到达B地,第二天8:00从B地出发,沿原路6小时后返回A地.则在此过程中,以下说法中 ①一定存在某个位置E,两天经过此地的时刻相同
②一定存在某个时刻,两天中在此刻的速度相同
③一定存在某一段路程EF(不含A、B),两天在此段内的平均速度相同.(以上速度不考虑方向)
正确说法的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AC=2ED,AC∥平面EDB,AC⊥平面BCD,平面ACDE⊥平面ABC.

(Ⅰ)求证:AC∥ED;
(Ⅱ)求证:DC⊥BC;
(Ⅲ)当BC=CD=DE=1时,求二面角A﹣BE﹣D的余弦值;
(Ⅳ)在棱AB上是否存在点P满足EP∥平面BDC;
(Ⅴ)设 =k,是否存在k满足平面ABE⊥平面CBE?若存在求出k值,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】血药浓度(Plasma Concentration)是指药物吸收后在血浆内的总浓度.药物在人体内发挥治疗作用时,该药物的血药浓度应介于最低有效浓度和最低中毒浓度之间.已知成人单次服用1单位某药物后,体内血药浓度及相关信息如图所示:
根据图中提供的信息,下列关于成人使用该药物的说法中,不正确的个数是(
①首次服用该药物1单位约10分钟后,药物发挥治疗作用
②每次服用该药物1单位,两次服药间隔小于2小时,一定会产生药物中毒
③每间隔5.5小时服用该药物1单位,可使药物持续发挥治疗作用
④首次服用该药物1单位3小时后,再次服用该药物1单位,不会发生药物中毒.
A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若无穷数列{an}满足:k∈N* , 对于 ,都有an+k﹣an=d(其中d为常数),则称{an}具有性质“P(k,n0 , d)”. (Ⅰ)若{an}具有性质“P(3,2,0)”,且a2=3,a4=5,a6+a7+a8=18,求a3
(Ⅱ)若无穷数列{bn}是等差数列,无穷数列{cn}是公比为正数的等比数列,b1=c3=2,b3=c1=8,an=bn+cn , 判断{an}是否具有性质“P(2,1,0)”,并说明理由;
(Ⅲ)设{an}既具有性质“P(i,2,d1)”,又具有性质“P(j,2,d2)”,其中i,j∈N* , i<j,i,j互质,求证:{an}具有性质“ ”.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆C1的中心在原点O,长轴左、右端点M、N在x轴上,椭圆C2的短轴为MN,且C1、C2的离心率都为e,直线l⊥MN,l与C1交于两点,与C2交于两点,这四点纵坐标从大到小依次为A、B、C、D.

(1)设 ,求|BC|与|AD|的比值;
(2)若存在直线l,使得BO∥AN,求椭圆离心率e的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在我国古代数学名著《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑,如图,在鳖臑ABCD中,AB⊥平面BCD,且AB=BC=CD,则异面直线AC与BD所成角的余弦值为(
A.
B.﹣
C.
D.﹣

查看答案和解析>>

同步练习册答案