精英家教网 > 高中数学 > 题目详情
设函数f(x)=
2x-2    x∈[1,+∞)
x2-2x  x∈(-∞,1]
,则函数f(x)=
1
4
的零点是
 
分析:本题考查的知识点是分段函数及函数的零点,由设函数f(x)=
2x-2     x∈[1 +∞)
x2-2x   x∈(-∞,1)
,函数f(x)-
1
4
的零点即为函数f(x)=
1
4
时的自变量x的值,分类讨论后,即可得到结果.
解答:解:当x≥1时,
f(x)-
1
4
=0,
即2x-2-
1
4
=0,
∴x=
9
8

当x<1时,
f(x)-
1
4
=0,
即x2-2x-
1
4
=0,
x=
2-
5
2
(舍去大于1的根).
∴f(x)-
1
4
的零点为
9
8
2-
5
2

故答案为:
9
8
2-
5
2
点评:分段函数分段处理,这是研究分段函数图象和性质最核心的理念,具体做法是:分段函数的定义域、值域是各段上x、y取值范围的并集,分段函数的奇偶性、单调性要在各段上分别论证;分段函数的最大值,是各段上最大值中的最大者.故本题中由函数值求自变量的值,也要分段讨论.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

2、设函数f(x)=2x+3,g(x)=3x-5,则f(g(1))=
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

给定实数a(a≠
12
),设函数f(x)=2x+(1-2a)ln(x+a)(x>-a,x∈R),f(x)的导数f′(x)的图象为C1,C1关于直线y=x对称的图象记为C2
(Ⅰ)求函数y=f′(x)的单调区间;
(Ⅱ)对于所有整数a(a≠-2),C1与C2是否存在纵坐标和横坐标都是整数的公共点?若存在,请求出公共点的坐标;若不若存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
(2x+1)(3x+a)
x
为奇函数,则a=
-
3
2
-
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=2x+x-4,则方程f(x)=0一定存在根的区间为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
-2x+m2x+n
(m、n为常数,且m∈R+,n∈R).
(Ⅰ)当m=2,n=2时,证明函数f(x)不是奇函数;
(Ⅱ)若f(x)是奇函数,求出m、n的值,并判断此时函数f(x)的单调性.

查看答案和解析>>

同步练习册答案