精英家教网 > 高中数学 > 题目详情

已知椭圆C:+=1(a>b>0),直线y=x+与以原点为圆心,以椭圆C的短半轴长为半径

的圆相切,F1,F2为其左、右焦点,P为椭圆C上任一点,△F1PF2的重心为G,内心为I,且IG∥F1F2。⑴

求椭圆C的方程。⑵若直线L:y=kx+m(k≠0)与椭圆C交于不同两点A,B且线段AB的垂直平分线过定点

C(,0)求实数k的取值范围。

 

 

【答案】

解:⑴设P(x0,y0),x0±a,则G() ∵IG∥F1F∴Iy=  |F1F2|=2c

∴S△F1PF2=·|F1F2|·|y0|=(|PF1|+|PF2|+|F1F2|) · ||   ……………………(4分) 

∴2c·3=2a+2c  ∴e== 又∵b=  ∴b=  ∴a=2∴椭圆C的方程为+=1(6分)

⑵设A(x1, y1)、B(x2, y2  ,消去y  (3+4k2)x2+8kmx+4m2-12=0

∴△=(8km)2-4(3+4k2)(4m2-12)>0,即m2<4k2+3又∵x1+x2=-,则y1+y2=

∴线段AB的中点P的坐标为(-, )                     …………(8分)   

又线段AB的垂直平分线l′的方程为y= (x-)                      …………(9分)

点P在直线l′上,=- (-)                    …………(10分)

∴4k2+6km+3=0  ∴m=-(4k2+3)  ∴<4k2+3,  ∴k2  

∴k>或k>-  ∴k的取值范围是(-∞,-)∪(,+∞)   …………(13分)

 

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:+y2=1,则与椭圆C关于直线y=x成轴对称的曲线的方程是____________.

查看答案和解析>>

科目:高中数学 来源:2012年陕西省高考数学压轴卷(解析版) 题型:选择题

已知椭圆C:+=1(a>b>0)的左右焦点为F1,F2,过F2线与圆x2+y2=b2相切于点A,并与椭圆C交与不同的两点P,Q,如图,PF1⊥PQ,若A为线段PQ的靠近P的三等分点,则椭圆的离心率为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广西桂林市、崇左市、防城港市高考第一次联合模拟理科数学试卷(解析版) 题型:解答题

 如图,已知椭圆C:+=1(a>b>0)的左、右焦点分别为F、F,A是椭圆C上的一点,AF⊥FF,O是坐标原点,OB垂直AF于B,且OF=3OB.

(Ⅰ)求椭圆C的离心率;

(Ⅱ)求t∈(0,b),使得命题“设圆x+y=t上任意点M(x,y)处的切线交椭圆C于Q、Q两点,那么OQ⊥OQ”成立.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年四川省攀枝花市高三12月月考文科数学试卷(解析版) 题型:解答题

已知椭圆C:=1(a>b>0)的离心率为,且在x轴上的顶点分别为

(1)求椭圆方程;

(2)若直线轴交于点T,P为上异于T的任一点,直线分别与椭圆交于M、N两点,试问直线MN是否通过椭圆的焦点?并证明你的结论.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省高三上学期摸底考试文科数学 题型:解答题

(本题满分14分)已知椭圆C:=1(a>b>0)的离心率为,短轴一

 

个端点到右焦点的距离为3.

(1)求椭圆C的方程;

(2)过椭圆C上的动点P引圆O:的两条切线PA、PB,A、B分别为切点,试探究椭圆C上是否存在点P,由点P向圆O所引的两条切线互相垂直?若存在,请求出点P的坐标;若不存在,请说明理由.

 

 

 

查看答案和解析>>

同步练习册答案