精英家教网 > 高中数学 > 题目详情
已知
2
<a<2,则函数f(x)=
a2-x2
+|x|-2的零点个数为(  )
A、1B、2C、3D、4
分析:本题考查的是函数零点的个数判定问题.在解答时,可先结合函数的特点将问题转化为研究两个函数图象交点的问题.继而问题可获得解答.
解答:精英家教网解:f(x)=0得:
a2-x2
+|x|-2=0

即:
a2-x2
=2-|x|

由题意可知:要研究函数f(x)=
a2-x2
+|x|-2
的零点个数,只需研究函数y=
a2-x2
,y=2-|x|的图象交点个数即可.
画出函数y=
a2-x2
,y=2-|x|的图象,
由图象可得有4个交点.
故选D.
点评:本题考查的是函数零点的个数判定问题.在解答的过程当中充分体现了函数与方程的思想、数形结合的思想以及问题转化的思想.值得同学们体会和反思.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的图象上一个最高点为(2,3),与这个最高点相邻的一个函数值为0的点是(6,0),则f(x)的解析式为(  )
A、f(x)=3sin(
π
8
x-
π
4
)
B、f(x)=3sin(
π
4
x-
π
4
)
C、f(x)=3sin(
π
8
x+
π
4
)
D、f(x)=3sin(
π
4
x+
π
4
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
x-5x 2,(x≤5)
f(x-2),(x>5)
,则f(8)的函数值为
(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=logax(a>0,且a≠1)自变量与函数值的部分对应值如下表:
x 2 1 0.25
f(x) -1 0 2
则a=
1
2
1
2
;若函数g(x)=xf(x),则满足条件g(x)>0的x的集合为
{x|0<x<1}
{x|0<x<1}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=ax(a>0且a≠1)在区间[-2,2]上的函数值恒小于2,则a的取值范围是
{a|1<a<
2
2
<a<1}
{a|1<a<
2
2
<a<1}

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M≥0,都有|f(x)|≤M 成立,则称f(x)是D上的有界函数,其中M称为函f(x)的一个上界.
已知函数f(x)=1+a(
1
2
)
x
+(
1
4
)
x
,g(x)=log
1
2
1-ax
x-1

(1)若函数g(x)为奇函数,求实数a的值;
(2)在(1)的条件下,求函数g(x),在区间[
5
3
,3]上的所有上界构成的集合;
(3)若函数g(x)在[0,+∞)上是以3为上界的有界函数,求实数a的取值范围.

查看答案和解析>>

同步练习册答案