精英家教网 > 高中数学 > 题目详情
19.若$\underset{lim}{n→∞}$an=a,试证明$\underset{lim}{n→∞}$|an|=|a|,反之如何?

分析 利用数列极限对于及其不等式的性质:||an|-|a||≤|an-a|即可证明.

解答 证明:∵$\underset{lim}{n→∞}$an=a,
∴??>0,存在N>0,对于常数|a|,
则||an|-|a||≤|an-a|<?,
∴$\underset{lim}{n→∞}$|an|=|a|.
反之不成立:也可能$\underset{lim}{n→∞}$an=-a.

点评 本题考查了数列极限对于及其不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.方程2x-ax2+1=0在(0,1)内有两个不相等的实数根,则a的取值范围是∅.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=log2(x2+1),函数g(x)=($\frac{1}{3}$)x-m.若?x1∈[0,3],?x2∈[1,2],使得f(x1)≥g(x2),则m的取值范围是(  )
A.[$\frac{1}{9}$,+∞)B.[$\frac{1}{3}$,+∞)C.(-∞,$\frac{1}{9}$]D.(-∞,$\frac{1}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.将椭圆$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{9}$=1变换为以椭圆的短轴为一条直径的圆的伸缩变换是$\left\{\begin{array}{l}{x'=\frac{3}{4}x}\\{y'=y}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知$\underset{lim}{x→0}[\frac{f(x)-2}{x}-\frac{sinx}{{x}^{2}}]$=1,试求$\underset{lim}{x→0}$f′(x)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.国家规定个人稿费的纳税办法为:不超过800元的不纳税;超过800元不超过4000的按超过800元的部分的14%纳税;超过4000元的按全部稿费的11%纳税.
(1)试根据上述规定建立某人所得稿费x元与纳税额y的函数关系式;
(2)某人出了一本书.共纳税420元,则这个人的稿费是多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在底面为菱形的四棱锥S-ABCD中,∠ABC=60°,SA=AB=a,SB=SD=$\sqrt{2}$SA,点P在SD上,且SD=3PD,
(1)证明:BD⊥平面SAC;
(2)若过点B的平面与SC、SD分别交于点E、F,且平面BEF∥平面APC,求SE的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个焦点为F(1,0),点(-1,$\frac{\sqrt{2}}{2}$)在椭圆C上,点T满足$\overrightarrow{OT}$=$\frac{{a}^{2}}{\sqrt{{a}^{2}-{b}^{2}}}$•$\overrightarrow{OF}$(其中O为坐标原点),过点F作一斜率为1的直线交椭圆于P、Q两点(其中P点在x轴上方,Q点在x轴下方)
(1)求椭圆C的方程;
(2)求△PQT的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.等比数列中,a1=a,公比为q,前n项和Sn,求S1+S2+S3+…+Sn

查看答案和解析>>

同步练习册答案