精英家教网 > 高中数学 > 题目详情

已知f(x)=x3-6x2+9xabca<b<c,且f(a)=f(b)=f(c)=0.现给出如下结论,其中正确的是                                                                            (  )

f(0)f(1)>0;②f(0)f(1)<0;③f(0)f(3)>0;④f(0)f(3)<0.

A.①③                            B.①④

C.②③                            D.②④

C

解析 ∵f(x)=x3-6x2+9xabc,∴f′(x)=3x2-12x+9=3(x-1)(x-3),令f′(x)=0,得x=1或x=3.依题意有,函数f(x)=x3-6x2+9xabc的图像与x轴有三个不同的交点,故f(1)f(3)<0,即(1-6+9-abc)(33-6×32+9×3-abc)<0.

∴0<abc<4,∴f(0)=-abc<0,f(1)=4-abc>0,f(3)=-abc<0,故②③是对的,应选C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=x3ax在[1,+∞)上是单调增函数,则a的最大值是(  )

A.0                B.1

C.2                D.3

查看答案和解析>>

科目:高中数学 来源:2014届浙江省高二下学期期中考试理科数学试卷(解析版) 题型:选择题

已知f(x)=x3x,若abc∈R,且ab>0,ac>0,bc>0,则f(a)+f(b)+f(c)的值(   )

A.一定大于0        B.一定等于0        C.一定小于0        D.正负都有可能

 

查看答案和解析>>

科目:高中数学 来源:2012年人教A版高中数学必修1单调性与最大(小)值练习卷(二)(解析版) 题型:解答题

已知f(x)=x3+x(x∈R),

(1)判断f(x)在(-∞,+∞)上的单调性,并证明;

(2)求证:满足f(x)=a(a为常数)的实数x至多只有一个.

 

查看答案和解析>>

科目:高中数学 来源:2013届山东省高二下学期3月月考理科数学试卷(解析版) 题型:选择题

已知f(x)=x3+ax2+(a+6)x+1有极大值和极小值,则a的取值范围为(   )

  A、-1<a<2    B、-3<a<6    C、a<-1或a>2    D、a<-3或a>6

 

查看答案和解析>>

科目:高中数学 来源:2013届浙江省杭州市高二第二学期3月月考理科数学试卷 题型:选择题

已知f(x)=x3+x,若a,b,c∈R,且a+b>0,a+c>0,b+c>0,则f(a)+f(b)+f(c)的值(  )

A.一定大于0  B.一定等于0   C.一定小于0  D.正负都有可能

 

查看答案和解析>>

同步练习册答案