精英家教网 > 高中数学 > 题目详情
用反证法证明命题“设ab∈R,|a|+|b|<1,a2-4b≥0,那么x2+ax+b=0的两根的绝对值都小于1”时,应假设
A.方程x2+ax+b=0的两根的绝对值存在一个小于1
B.方程x2+ax+b=0的两根的绝对值至少有一个大于等于1
C.方程x2+ax+b=0没有实数根
D.方程x2+ax+b=0的两根的绝对值都不小于1
B

试题分析:结合反证法的步骤,从命题的反面出发假设出结论,然后进行判断即.解:由于“都小于1”的反面是“至少有一个大于等于1”,所以用反证法证明“设a,b∈R,|a|+|b|<1,a2-4b≥0那么x2+ax+b=0的两根的绝对值都小于1”时,应先假设方程x2+ax+b=0的两根的绝对值至少有一个大于等于1.故选B
点评:本题主要考查反证法,解此题关键要了解反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知数列{an}满足a1λan+1ann-4,λ∈R,n∈N,对任意λ
∈R,证明:数列{an}不是等比数列.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知.经计算得,通过观察,我们可以得到一个一般性的结论.
(1)试写出这个一般性的结论;
(2)请用数学归纳法证明这个一般性的结论;
(3)对任一给定的正整数,试问是否存在正整数,使得
若存在,请给出符合条件的正整数的一个值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

用反证法证明命题“三角形的内角至多有一个钝角”时,假设的内容应为( )
A.假设至少有一个钝角B.假设至少有两个钝角
C.假设没有一个钝角D.假设没有一个钝角或至少有两个钝角

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

用反证法证明“自然数a,b,c中恰有一个偶数”时,下列假设正确的是   (   )
A.假设a,b,c都是奇数或至少有两个偶数
B.假设a,b,c都是偶数
C.假设a,b,c至少有两个偶数
D.假设a, b,c都是奇数

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

用反证法证明“若a,b,c<3,则a,b,c中至少有一个小于1”时,“假设”应为
A.假设a,b,c至少有一个大于1B.假设a,b,c都大于1
C.假设a,b,c至少有两个大于1D.假设a,b,c都不小于1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知,且求证:中至少有一个是负数。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知下列方程(1),(2),(3) 中至少有一个方程有实根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分15分)
已知数列{an}的前n项和为Sn,且a1=1,Sn=n2an(n∈N*).
(1)试求出S1,S2,S3,S4,并猜想Sn的表达式;              
(2)用数学纳法证明你的猜想,并求出an的表达式.                

查看答案和解析>>

同步练习册答案