分析 先判断,后证明;利用对数的运算性质化简,利用基本不等式及对数函数的单调性判断符号,从而证明.
解答 解:$\frac{1}{2}$[f(x1)+f(x2)]≤f($\frac{{x}_{1}+{x}_{2}}{2}$),证明如下,
$\frac{1}{2}$[f(x1)+f(x2)]-f($\frac{{x}_{1}+{x}_{2}}{2}$)
=$\frac{1}{2}$(lgx1+lgx2)-lg$\frac{{x}_{1}+{x}_{2}}{2}$
=lg$\sqrt{{x}_{1}{x}_{2}}$-lg$\frac{{x}_{1}+{x}_{2}}{2}$;
∵$\sqrt{{x}_{1}{x}_{2}}$≤$\frac{{x}_{1}+{x}_{2}}{2}$,
∴lg$\sqrt{{x}_{1}{x}_{2}}$≤lg$\frac{{x}_{1}+{x}_{2}}{2}$,
∴$\frac{1}{2}$[f(x1)+f(x2)]-f($\frac{{x}_{1}+{x}_{2}}{2}$)≤0,
即$\frac{1}{2}$[f(x1)+f(x2)]≤f($\frac{{x}_{1}+{x}_{2}}{2}$).
点评 本题考查了对数函数的应用及基本不等式的应用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [-1,+∞) | B. | (-1,+∞) | C. | (-∞,-1] | D. | (-∞,-1) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com