【题目】设f(x)="xln" x–ax2+(2a–1)x,aR.
(Ⅰ)令g(x)=f'(x),求g(x)的单调区间;
(Ⅱ)已知f(x)在x=1处取得极大值.求实数a的取值范围.
【答案】(Ⅰ)当时,函数单调递增区间为,当时,函数单调递增区间为,单调递减区间为; (Ⅱ)
【解析】试题分析:(Ⅰ)先求出,然后讨论当时,当时的两种情况即得.
(Ⅱ)分以下情况讨论:①当时,②当时,③当时,④当时,综合即得.
试题解析:(Ⅰ)由
可得,
则,
当时,
时, ,函数单调递增;
当时,
时, ,函数单调递增,
时, ,函数单调递减.
所以当时, 单调递增区间为;
当时,函数单调递增区间为,单调递减区间为.
(Ⅱ)由(Ⅰ)知, .
①当时, , 单调递减.
所以当时, , 单调递减.
当时, , 单调递增.
所以在x=1处取得极小值,不合题意.
②当时, ,由(Ⅰ)知在内单调递增,
可得当当时, , 时, ,
所以在(0,1)内单调递减,在内单调递增,
所以在x=1处取得极小值,不合题意.
③当时,即时, 在(0,1)内单调递增,在内单调递减,
所以当时, , 单调递减,不合题意.
④当时,即,当时, , 单调递增,
当时, , 单调递减,
所以f(x)在x=1处取得极大值,合题意.
综上可知,实数a的取值范围为.
科目:高中数学 来源: 题型:
【题目】过曲线的左焦点且和双曲线实轴垂直的直线与双曲线交于点A,B,若在双曲线的虚轴所在的直线上存在—点C,使得,则双曲线离心率e的最小值为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=sin+cos,x∈R.
(1)求函数f(x)的最小正周期,并求函数f(x)在x∈[﹣2π,2π]上的单调递增区间;
(2)函数f(x)=sinx(x∈R)的图象经过怎样的平移和伸缩变换可以得到函数f(x)的图象.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知{an}是由非负整数组成的无穷数列,该数列前n项的最大值记为An , 第n项之后各项an+1 , an+2…的最小值记为Bn , dn=An﹣Bn .
(1)若{an}为2,1,4,3,2,1,4,3…,是一个周期为4的数列(即对任意n∈N* , an+4=an),写出d1 , d2 , d3 , d4的值;
(2)设d是非负整数,证明:dn=﹣d(n=1,2,3…)的充分必要条件为{an}是公差为d的等差数列;
(3)证明:若a1=2,dn=1(n=1,2,3,…),则{an}的项只能是1或者2,且有无穷多项为1.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知椭圆的离心率为,且过点.设为椭圆的右焦点, 为椭圆上关于原点对称的两点,连结并延长,分别交椭圆于两点.
(1)求椭圆的标准方程;
(2)设直线的斜率分别为,是否存在实数,使得?若存在,求出实数的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某单位实行职工值夜班制度,已知名职工每星期一到星期五都要值一次夜班,且没有两人同时值夜班,星期六和星期日不值夜班,若昨天值夜班,从今天起至少连续天不值夜班,星期四值夜班,则今天是星期几( )
A. 五 B. 四 C. 三 D. 二
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设四面体的六条棱的长分别为1,1,1,1, 和a,且长为a的棱与长为 的棱异面,则a的取值范围是( )
A.(0, )
B.(0, )
C.(1, )
D.(1, )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在五面体ABCDEF中,点O是矩形ABCD的对角线的交点,面CDE是等边三角形,棱。
(1)证明FO∥平面CDE;
(2)设BC=CD,证明EO⊥平面CDE。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com