【题目】已知椭圆C:的焦距为2,左顶点与上顶点连线的斜率为.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)过点P(m,0)作圆x2+y2=1的一条切线l交椭圆C于M,N两点,当|MN|的值最大时,求m的值.
【答案】(Ⅰ)(Ⅱ)
【解析】
(Ⅰ)由题意得,解方程组即可得解;
(Ⅱ)讨论切线l的斜率存在和不存在,当存在时设切线l方程为y=k(x﹣m),与椭圆联立得(1+4k2)x2﹣8k2mx+4k2m2﹣4=0,由直线与圆相切得,再利用弦长公式表示,从而得解.
(Ⅰ)由题意可知,解之得a=2,b=1.故椭圆C的标准方程为.
(Ⅱ)由题意知,|m|≥1,当|m|=1时,.
当|m|>1时,易知切线l的斜率存在,设切线l方程为y=k(x﹣m).
由,得(1+4k2)x2﹣8k2mx+4k2m2﹣4=0,
设M(x1,y1),N(x2,y2),则,
由于过点P(m,0)的直线l与圆x2+y2=1相切,得 ,;
所以 .
当且仅当,即时,|MN|=2,即|MN|的最大值为2.
故m的值为.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-2x.
(1)求f(x)的解析式,并画出f(x)的图象;
(2)设g(x)=f(x)-k,利用图象讨论:当实数k为何值时,函数g(x)有一个零点?二个零点?三个零点?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一半径为4.8米的水轮如图所示,水轮圆心距离水面2.4米,已知水轮每60秒逆时针转动一圈,如果当水轮上点从水中浮现时(图中点)开始计时,则( )
A.点第一次到达最高点需要10秒
B.在水轮转动的一圈内,有20秒的时间,点距离水面的高度不低于4.8米
C.点距离水面的高度(米)与(秒)的函数解析式为
D.当水轮转动50秒时,点在水面下方,距离水面1.2米
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆的离心率为,椭圆上一点到左右两个焦点的距离之和是4.
(1)求椭圆的方程;
(2)已知过的直线与椭圆交于两点,且两点与左右顶点不重合,若,求四边形面积的最大值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“总把新桃换旧符”(王安石)、“灯前小草写桃符”(陆游),春节是中华民族的传统节日,在宋代人们用写“桃符”的方式来祈福避祸,而现代人们通过贴“福”字、贴春联、挂灯笼等方式来表达对新年的美好祝愿,某商家在春节前开展商品促销活动,顾客凡购物金额满50元,则可以从“福”字、春联和灯笼这三类礼品中任意免费领取一件,若有4名顾客都领取一件礼品,则他们中有且仅有2人领取的礼品种类相同的概率是( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=log4(4x+1)+kx(k∈R)是偶函数.
(1)求k的值;
(2)设g(x)=log4,若函数f(x)与g(x)的图象有且只有一个公共点,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】假设要考察某公司生产的狂犬疫苗的剂量是否达标,现从500支疫苗中抽取50支进行检验,利用随机数表抽取样本时,先将500支疫苗按000,001,…,499进行编号,如果从随机数表第7行第8列的数开始向右读,请写出第3支疫苗的编号______________________
(下面摘取了随机数表第7行至第9行)
84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76
63 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79
33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com