精英家教网 > 高中数学 > 题目详情

【题目】若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程为(
A.
B.
C.
D.以上都不对

【答案】C
【解析】解:设椭圆的长半轴与短半轴分别为a和b,
则2(a+b)=18,即a+b=9①,
由焦距为6,得到c=3,则a2﹣b2=c2=9②,
由①得到a=9﹣b③,把③代入②得:
(9﹣b)2﹣b2=9,化简得:81﹣18b=9,解得b=4,把b=4代入①,解得a=5,
所以椭圆的方程为:
故选C.
设出椭圆的长半轴与短半轴分别为a和b,根据长轴与短轴的和为18列出关于a与b的方程记作①,由焦距等于6求出c的值,根据椭圆的基本性质a2﹣b2=c2 , 把c的值代入即可得到关于a与b的另一关系式记作②,将①②联立即可求出a和b的值,然后利用a与b的值写出椭圆的方程即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的方程为 =1,其左右焦点分别为F1 , F2 , 过其左焦点且斜率为1的直线与该椭圆相交与A,B两点,则 =

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】移动公司在春节正月初八这天推出4G套餐,对这天办理套餐的客户进行优惠,优惠方案如下:选择套餐一的客户可获得优惠200元,选择套餐二的客户可获得优惠500元,选择套餐三的客户可获得优惠300元. 初八当天参与活动的人数统计结果如图所示,

(Ⅰ)从参加当天活动的人中任选一人,求此人获得优惠金额不低于300元的概率(将频率视为概率);

(Ⅱ)若采用分层抽样的方式从参加活动的客户中选出6人,再从该6人中随机选两人,求这两人获得相等优惠金额的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某生产甲,乙两种产品,生产这两种产品每吨需要的煤,电以及每吨产品的产值如表所示.若每天配给该厂的煤至多56吨,供电至多45千瓦,问该厂如何安排生产,使该厂日产值最大?

用煤/吨

用电/千瓦

产值/万元

甲种产品

7

2

8

乙种产品

3

5

11

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递减,若f(log2a)+f(2log a)≥2f(﹣1),则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2x+2x
(1)用定义法证明:函数f(x)是区间(0,+∞)上的增函数;
(2)若x∈[﹣1,2],求函数g(x)=2x[f(x)﹣2]﹣3的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)= 是奇函数,则使f(x)>3成立的x的取值范围为(
A.(﹣∞,﹣1)
B.(﹣1,0)
C.(0,1)
D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017福建三明5月质检】已知函数

时,求证:过点有三条直线与曲线相切;

时,,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足 ,n∈N*
(1)求证:数列 为等比数列;
(2)是否存在互不相等的正整数m,s,t,使m,s,t成等差数列,且am﹣1,as﹣1,at﹣1成等比数列?如果存在,求出所有符合条件的m,s,t;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案