精英家教网 > 高中数学 > 题目详情
3.计算下列各式的值:
(1)(1g5)2+21g2-(1g2)2
(2)$\frac{lg3+\frac{2}{5}lg9+\frac{3}{5}lg\sqrt{27}-lg\sqrt{3}}{lg81-lg27}$.

分析 根据对数的运算性质即可求出.

解答 解:(1)(1g5)2+21g2-(1g2)2=(lg5+lg2)(lg5-lg2)+2lg2=lg5-lg2+2lg2=lg5+lg2=lg10=1,
(2)$\frac{lg3+\frac{2}{5}lg9+\frac{3}{5}lg\sqrt{27}-lg\sqrt{3}}{lg81-lg27}$=$\frac{lg3+\frac{4}{5}lg3+\frac{9}{10}lg3-\frac{1}{2}lg3}{lg3}$=1+$\frac{4}{5}$+$\frac{9}{10}$-$\frac{1}{2}$=$\frac{11}{5}$.

点评 本题考查了对数函数的运算性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.我们知道,如果集合A⊆S,那么S的子集A的补集为∁sA={x|x∈s,且x∉A}.类似地,对于集合A,B,我们把集合{x|x∈A,且x∉B}叫做集合A与集合B的差集,记作A-B.例如,A={1,2,3,4,5},B={4,5,6,7,8},则有A-B={1,2,3},B-A={6,7,8}.若S是高一(1)班全体同学的集合,A是高一(1)全体女同学的集合,求S-A及∁sA.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知平面直角坐标系中,点O为坐标原点,点A(sinx,1),B(cosx,0),C(-sinx,2),点P在直线AB上,且$\overrightarrow{AB}=\overrightarrow{BP}$.
(1)记函数f(x)=$\overrightarrow{BP}•\overrightarrow{CA}$,判断点($\frac{7π}{8}$,0)是否为函数f(x)图象的对称中心,若是,请给予证明;若不是,请说明理由.
(2)若函数g(x)=|$\overrightarrow{OP}+\overrightarrow{OC}$|,且x∈[-$\frac{π}{12}$,$\frac{π}{2}$],求函数g(x)的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若logab+3logba=$\frac{13}{2}$,则用a表示b的式子是(  )
A.b=a6B.b=$\sqrt{a}$C.b=a6或b=$\sqrt{a}$D.b=$\root{6}{a}$且b=a2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知下列不等式,比较正数m,n的大小.
(1)log3m<log3n;
(2)log0.3m>log0.3n.
(3)logam<logan(0<a<1);
(4)logam>logan(a>1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知方程x2+(3m-1)x+(3m-2)=0的两个根都属于(-3,3),且其中至少有一个根小于1,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若10m=2,10n=4,则10${\;}^{\frac{3m-n}{2}}$$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若f(x)=e${\;}^{\frac{x}{2}}$,则f′(x)=(  )
A.e${\;}^{\frac{x}{2}}$,B.xe${\;}^{\frac{x}{2}}$,C.$\frac{1}{2}$•e${\;}^{\frac{x}{2}}$,D.$\frac{x}{2}$•e${\;}^{\frac{x}{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设函数的集合P={f(x)=log2(x+a)+b|a=-$\frac{1}{2}$,0,$\frac{1}{2}$,1;b=-1,0,1},平面上点的集合Q={(x,y)|x=-$\frac{1}{2}$,0,$\frac{1}{2}$,1;y=-1,0,1},则在同一直角坐标系中,P中函数f(x)图象恰好经过Q中两个点的函数的个数是6.

查看答案和解析>>

同步练习册答案