分析 求出A的坐标和切线方程,则所求面积和体积均可用两个定积分的差来表示.
解答 解:设切线方程为y=kx+1,切点坐标为(a,b),
则$\left\{\begin{array}{l}{k=\frac{1}{a}}\\{ka+1=b}\\{lna=b}\end{array}\right.$,解得a=e2,b=2,∴A(e2,2).
将y=0代入y=lnx得x=1,∴B(1,0).
∴直线AB的方程为$\frac{y}{2}=\frac{x-1}{{e}^{2}-1}$,即y=$\frac{2x}{{e}^{2}-1}$-$\frac{2}{{e}^{2}-1}$.
∴区域D的面积为${∫}_{1}^{{e}^{2}}lnxdx$-${∫}_{1}^{{e}^{2}}$($\frac{2x}{{e}^{2}-1}$-$\frac{2}{{e}^{2}-1}$)dx=(xlnx-x)${|}_{1}^{{e}^{2}}$-($\frac{{x}^{2}-2x}{{e}^{2}-1}$)${|}_{1}^{{e}^{2}}$=2.
区域D绕x轴旋转一周所得几何体体积为π•${∫}_{1}^{{e}^{2}}(lnx)^{2}dx$-$\frac{1}{3}×π×{2}^{2}×({e}^{2}-1)$=π•x[(lnx)2-2lnx+2]|$\underset{\stackrel{{e}^{2}}{\;}}{1}$-$\frac{4π({e}^{2}-1)}{3}$=(2e2-2)•π-$\frac{4π({e}^{2}-1)}{3}$=$\frac{2π{(e}^{2}-1)}{3}$.
点评 本题考查了定积分在求面积、体积中的应用,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\sqrt{5}-1$ | B. | 2 | C. | $\sqrt{5}$ | D. | $\sqrt{5}+1$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com