精英家教网 > 高中数学 > 题目详情
1.过点(0,1)作曲线L:y=lnx的切线,切点为A.又L与x轴交于B点,区城D由L、x轴与直线AB围成,求区域D的面积及D绕x轴旋转一周所得旋转体的体积.

分析 求出A的坐标和切线方程,则所求面积和体积均可用两个定积分的差来表示.

解答 解:设切线方程为y=kx+1,切点坐标为(a,b),
则$\left\{\begin{array}{l}{k=\frac{1}{a}}\\{ka+1=b}\\{lna=b}\end{array}\right.$,解得a=e2,b=2,∴A(e2,2).
将y=0代入y=lnx得x=1,∴B(1,0).
∴直线AB的方程为$\frac{y}{2}=\frac{x-1}{{e}^{2}-1}$,即y=$\frac{2x}{{e}^{2}-1}$-$\frac{2}{{e}^{2}-1}$.
∴区域D的面积为${∫}_{1}^{{e}^{2}}lnxdx$-${∫}_{1}^{{e}^{2}}$($\frac{2x}{{e}^{2}-1}$-$\frac{2}{{e}^{2}-1}$)dx=(xlnx-x)${|}_{1}^{{e}^{2}}$-($\frac{{x}^{2}-2x}{{e}^{2}-1}$)${|}_{1}^{{e}^{2}}$=2.
区域D绕x轴旋转一周所得几何体体积为π•${∫}_{1}^{{e}^{2}}(lnx)^{2}dx$-$\frac{1}{3}×π×{2}^{2}×({e}^{2}-1)$=π•x[(lnx)2-2lnx+2]|$\underset{\stackrel{{e}^{2}}{\;}}{1}$-$\frac{4π({e}^{2}-1)}{3}$=(2e2-2)•π-$\frac{4π({e}^{2}-1)}{3}$=$\frac{2π{(e}^{2}-1)}{3}$.

点评 本题考查了定积分在求面积、体积中的应用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.如图,在正方体ABCD-A1B1C1D1中,M是AA1上一点,P是A1B1上一点,N是D1C1中点,且DM,NP相交于一点Q,求证:
(1)Q,A1,D1三点共线;
(2)MP∥DN.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\frac{m}{(x-1)^{2}}$,且f(2)=1;
(1)求m的值;
(2)用单调性定义证明:函数f(x)在(-∞,1)上为增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.证明:tan2α-$\frac{1}{ta{n}^{2}α}$=-$\frac{2sin4α}{si{n}^{3}2α}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.(1-x+x2)(x-$\frac{1}{x}$)6的展开式中的常数项为-5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知0<x<$\frac{π}{4}$,比较(tanx)cotx,(cotx)tanx,(tanx)cosx的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.等差数列{an}中,a1=-8,a10=10,其各项绝对值的和Tn=|a1|+|a2|+…+|an|求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\sqrt{3}$sin2x-2cos2x+1.
(1)若x∈R,求f(x)的单调增区间;
(2)若x∈[0,$\frac{π}{2}$],求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数y=x+$\frac{5}{x+1}$(x≥2)取得最小值时的x的值为(  )
A.$\sqrt{5}-1$B.2C.$\sqrt{5}$D.$\sqrt{5}+1$

查看答案和解析>>

同步练习册答案