精英家教网 > 高中数学 > 题目详情

【题目】求下列曲线的标准方程:
(1)与椭圆+=1有相同的焦点,直线y=x为一条渐近线.求双曲线C的方程.
(2)焦点在直线3x﹣4y﹣12=0 的抛物线的标准方程.

【答案】解:(1)由椭圆+=1,得a2=8,b2=4,
∴c2=a2﹣b2=4,则焦点坐标为F(2,0),
∵直线y=x为双曲线的一条渐近线,
∴设双曲线方程为(λ>0),
,则λ+3λ=4,λ=1.
∴双曲线方程为:
(2)由3x﹣4y﹣12=0,得
∴直线在两坐标轴上的截距分别为(4,0),(0,﹣3),
∴分别以(4,0),(0,﹣3)为焦点的抛物线方程为:
y2=16x或x2=﹣12y.
【解析】(1)由椭圆方程求出双曲线的焦点坐标,设出以直线y=x为一条渐近线的双曲线方程(λ>0),然后结合焦点坐标求得λ,则曲线方程可求;
(2)求出直线在两坐标轴上的截距,然后直接分类代入抛物线方程得答案.
【考点精析】本题主要考查了椭圆的标准方程的相关知识点,需要掌握椭圆标准方程焦点在x轴:,焦点在y轴:才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知向量,,存在非零实数,使得向量,且.问是否存在最小值?若存在,求其最小值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=log4(4x+1)+kx,(k∈R)为偶函数.
(1)求k的值;
(2)若方程f(x)=log4(a2x﹣a)有且只有一个根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设全集U=R,A={x|x2+px+12=0},B={x|x2﹣5x+q=0},若(UA)∩B={2},A∩(UB)={4},求A∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】方程(x+y﹣1)=0所表示的曲线是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=3x , f(a+2)=27,函数g(x)=λ2ax﹣4x的定义域为[0,2].
(1)求a的值;
(2)若λ=2,试判断函数g(x)在[0,2]上的单调性,并加以证明;
(3)若函数g(x)的最大值是 ,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD是☉O的内接四边形,AB的延长线与DC的延长线交于点E,且CB=CE.

(Ⅰ)证明:∠D=∠E;

(Ⅱ)设AD不是☉O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点。

(Ⅰ)求椭圆C的方程;

(Ⅱ)是否存在平行于OA的直线,使得直线与椭圆C有公共点,且直线OA与的距离等于4?若存在,求出直线的方程;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线,直线经过点相交于两点.

(1)若,求证: 必为的焦点;

(2)设,若点上,且的最大值为,求的值;

(3)设为坐标原点,若,直线的一个法向量为,求面积的最大值.

查看答案和解析>>

同步练习册答案