精英家教网 > 高中数学 > 题目详情
(本小题13分)如图1,在三棱锥PABC中,平面ABCD为侧棱PC上一点,它的正(主)视图和侧(左)视图如图2所示。

(1)证明:平面PBC
(2)求三棱锥DABC的体积;
(3)在的平分线上确定一点Q,使得平面ABD,并求此时PQ的长。
(1)根据已知题意,可知,然后结合来得到证明。
(2)(3)

试题分析:(1)由主视图可知DPC中点,

(2)
(3)设的角平分线交ABM,连DM,CM并延长CM,使得,连接

分别是的中点,

为AB、CQ中点  
∴四边形ACBQ为正方形


点评:解决的关键是对于线面垂直的判定定理和性质定理的运用,属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

下面四个命题:
①若直线平面,则内任何直线都与平行;
②若直线平面,则内任何直线都与垂直;
③若平面平面,则内任何直线都与平行;
④若平面平面,则内任何直线都与垂直。
其中正确的两个命题是(  )
A.①②B.②③C.③④D.②④

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥P -ABC中,点P在平面ABC上的射影D是AC的中点.BC ="2AC=8,AB" =

(I )证明:平面PBC丄平面PAC
(II)若PD =,求二面角A-PB-C的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

将正方体的纸盒展开如图,直线在原正方体的位置关系是(    )
A.平行B.垂直C.相交成60°角 D.异面且成60°角

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知三棱锥O-ABC的侧棱OA,OB,OC两两垂直,且OA=2,OB=3,OC=4,E是OC的中点.

(1)求异面直线BE与AC所成角的余弦值;
(2)求二面角A-BE-C的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线mn和平面.下列四个命题中,
①若mn,则mn
②若mnmn,则
③若m,则m
④若mm,则m
其中正确命题的个数是(   )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,已知所在的平面,AB是⊙的直径,是⊙上一点,且分别为中点。

(1)求证:平面
(2)求证:
(3)求三棱锥-的体积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分) 本题共有2个小题,第1小题满分6分,第2小题满分6分.
如图已知四棱锥的底面是边长为6的正方形,侧棱的长为8,且垂直于底面,点分别是的中点.求

(1)异面直线所成角的大小(结果用反三角函数值表示);
(2)四棱锥的表面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)如图所示,四棱锥中,底面是边长为2的菱形,是棱上的动点.

(Ⅰ)若的中点,求证://平面
(Ⅱ)若,求证:
(III)在(Ⅱ)的条件下,若,求四棱锥的体积.

查看答案和解析>>

同步练习册答案