【题目】(本小题满分12分)已知椭圆C:的离心率为,连接椭圆四个顶点形成的四边形面积为4.
(1)求椭圆C的标准方程;
(2)过点A(1,0)的直线与椭圆C交于点M, N,设P为椭圆上一点,且O为坐标原点,当时,求t的取值范围.
【答案】(1);(2).
【解析】
试题本题主要考查椭圆的标准方程及其几何性质、直线与椭圆的位置关系等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,先利用离心率、、四边形的面积列出方程,解出a和b的值,从而得到椭圆的标准方程;第二问,讨论直线MN的斜率是否存在,当直线MN的斜率存在时,直线方程与椭圆方程联立,消参,利用韦达定理,得到、,利用列出方程,解出,代入到椭圆上,得到的值,再利用,计算出的范围,代入到的表达式中,得到t的取值范围.
试题解析:(1),,即.
又,.
∴椭圆C的标准方程为.
(2)由题意知,当直线MN斜率存在时,
设直线方程为,,
联立方程消去y得,
因为直线与椭圆交于两点,
所以恒成立,
,
又,
因为点P在椭圆上,所以,
即,
又,
即,整理得:,
化简得:,解得或(舍),
,即.
当直线MN的斜率不存在时,,此时,
.
科目:高中数学 来源: 题型:
【题目】某中学为了解中学生的课外阅读时间,决定在该中学的1200名男生和800名女生中按分层抽样的方法抽取20名学生,对他们的课外阅读时间进行问卷调查.现在按课外阅读时间的情况将学生分成三类:类(不参加课外阅读),类(参加课外阅读,但平均每周参加课外阅读的时间不超过3小时),类(参加课外阅读,且平均每周参加课外阅读的时间超过3小时).调查结果如下表:
类 | 类 | 类 | |
男生 | 5 | 3 | |
女生 | 3 | 3 |
(1)求出表中,的值;
(2)根据表中的统计数据,完成下面的列联表,并判断是否有90%的把握认为“参加课外阅读与否”与性别有关;
男生 | 女生 | 总计 | ||
不参加课外阅读 | ||||
参加课外阅读 | ||||
总计 |
P(K≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】半正多面体(semiregular solid) 亦称“阿基米德多面体”,是由边数不全相同的正多边形为面的多面体,体现了数学的对称美.二十四等边体就是一种半正多面体,是由正方体切截而成的,它由八个正三角形和六个正方形为面的半正多面体.如图所示,图中网格是边长为1的正方形,粗线部分是某二十四等边体的三视图,则该几何体的体积为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】小王想在某市一住宅小区买套新房,据了解,该小区有若干栋互相平行的平顶楼房,每栋楼房有15层,每层楼高为3米,顶楼有1米高的隔热层,两楼之间相距60米.小王不想买最前面和最后面的楼房,但希望所买楼层全年每天正午都能晒到太阳.为此,小王查找了有关地理资料,获得如下一些信息:①该市的纬度(地面一点所在球半径与赤道平面所成的角)为北纬;②正午的太阳直射北回归线(太阳光线与赤道平面所成的角为)时,物体的影子最短,直射南回归线(太阳光线与赤道平面所成的角为)时,物体的影子最长,那么小王买房的最低楼层应为( )
A.3B.4C.5D.6
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,已知曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,直线的极坐标方程为.
(1)求曲线的普通方程和直线的直角坐标方程;
(2)若射线的极坐标方程为().设与相交于点,与相交于点,求.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com