精英家教网 > 高中数学 > 题目详情
20.已知A(-2,4),B(3,-1),C(-3,-4),且$\overrightarrow{CM}$=3$\overrightarrow{CA}$,$\overrightarrow{CN}$=2$\overrightarrow{CB}$,试求点N,点M,向量$\overrightarrow{MN}$的坐标和M,N两点间的距离.

分析 设M(x,y),则$\overrightarrow{CM}=(x+3,y+4)$,通过$\left\{{\begin{array}{l}x+3=3\\ y+4=24\end{array}}\right.$,得到M(0,20),求得N(9,2),得到$\overrightarrow{MN}$=(9,-18),然后求解距离.

解答 (本小题满分(12分))
解:∵A(-2,4),B(3,-1),C(-3,-4)
∴$\overrightarrow{CA}$=(1,8),$\overrightarrow{CB}$=(6,3)
∴$\overrightarrow{CM}$=3$\overrightarrow{CA}$=(3,24),$\overrightarrow{CN}$=2$\overrightarrow{CB}$=(12,6)
设M(x,y),则$\overrightarrow{CM}=(x+3,y+4)$
所以$\left\{{\begin{array}{l}x+3=3\\ y+4=24\end{array}}\right.$,解得$\left\{{\begin{array}{l}x=0\\ y=20\end{array}}\right.$所以M(0,20)
同理可求得N(9,2),所以$\overrightarrow{MN}$=(9,-18),
$|MN|=\sqrt{{9^2}+{{(-18)}^2}}=\sqrt{405}=9\sqrt{5}$

点评 本题考查向量的坐标运算,距离公式的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知定义域为R的函数f(x)=$\frac{2}{{{2^x}+1}}$+a是奇函数,
(1)求a的值.
(2)判断函数f(x)在R上的单调性并加以证明;
(3)若对于任意t∈R,不等式f(t2-6t)+f(2t2-k)<0恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数f(x)=2x3-9x2+12x+1的单调递增区间(  )
A.(1,2)B.(2,+∞)C.(-∞,1)D.(-∞,1)和(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.sin$\frac{23π}{6}$=(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.-$\frac{1}{2}$D.-$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知tan(a-45°)=2,则tana=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若向量$\overrightarrow{AB}$=(3,-1),$\overrightarrow{n}$=(2,1),且$\overrightarrow{n}$•$\overrightarrow{AC}$=7,那么$\overrightarrow{n}$•$\overrightarrow{BC}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=sin(2x+$\frac{π}{3}$)+sin(2x-$\frac{π}{3}$)+2cos2x-1,x∈R.
(1)求函数f(x)的最小正周期;
(2)求函数f(x)在区间[-$\frac{π}{4}$,$\frac{π}{4}$]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.对于函数f(x),若f(x0)=x0,则称x0为函数f(x)的“不动点”:若f(f(x0))=x0,则称x0为f(x)的“稳定点”,如果函数f(x)=ax2+1(a∈R)的稳定点恰是它的不动点,那么a的取值范围为(  )
A.$(-∞,\frac{1}{4}]$B.$(-\frac{3}{4},+∞)$C.$[-\frac{3}{4},\frac{1}{4}]$D.$(-1,\frac{1}{4}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左顶点为A,上顶点为B,离心率为$\frac{\sqrt{3}}{2}$,且原点到直线AB的距离为$\frac{2\sqrt{5}}{5}$,过点A的直线l交两圆于点M(M不与椭圆的顶点重合),线段AM的垂直平分线交y轴于点P(0,y0).
(1)求椭圆的方程;
(2)若$\overrightarrow{PA}$•$\overrightarrow{PM}$=4,求直线l的方程.

查看答案和解析>>

同步练习册答案