精英家教网 > 高中数学 > 题目详情
20.求过点(1,0),且与直线y=2x-1平行的直线方程.

分析 根据题意,由直线的平行与斜率的关系可得要求直线的斜率k=2,又由要求直线过点(1,0),可得要求直线的点斜式方程,化简即可得答案.

解答 解:根据题意,直线y=2x-1的斜率为2,
要求直线与直线y=2x-1平行,则要求直线的斜率k=2,
又由要求直线过点(1,0),
则其方程为y=2(x-1),即y=2x-1;
故过点(1,0),且与直线y=2x-1平行的直线方程为y=2x-1.

点评 本题考查直线的点斜式方程,关键是掌握直线的平行与斜率的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知{$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$,$\overrightarrow{{e}_{3}}$}为空间的一个基底,且$\overrightarrow{OA}$=$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$-$\overrightarrow{{e}_{3}}$,$\overrightarrow{OB}$=-3$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$+2$\overrightarrow{{e}_{3}}$,$\overrightarrow{OC}$=$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$-$\overrightarrow{{e}_{3}}$,能否以{$\overrightarrow{OA},\overrightarrow{OB},\overrightarrow{OC}$}作为空间的一组基底?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=$\left\{\begin{array}{l}{-{x}^{2}+2x,x≥0}\\{{x}^{2}-2x,x<0}\end{array}\right.$,若关于x的不等式[f(x)]2+af(x)<0恰有1个整数解,则实数a的最大值为(  )
A.2B.3C.5D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知A(5,1),B(1,3),O为坐标原点且$\overrightarrow{O{A}_{1}}$=$\frac{1}{3}$$\overrightarrow{OA}$,$\overrightarrow{OB}$1=$\frac{1}{3}$$\overrightarrow{OB}$,求$\overrightarrow{{A}_{1}{B}_{1}}$的坐标和长度.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设P是双曲线$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1上一点,F1、F2是双曲线的两焦点,若|PF1|=3,则|PF2|=9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.(x-$\frac{2}{x}$)n展开式后有10项,则n=9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足2acosC-(2b-c)=0.
(1)求角A;
(2)若sinC=2sinB,且a=$\sqrt{3}$,求边b,c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在斜三角形ABC中,角A、B、C的对边分别为a、b、c且$\frac{{b}^{2}-{a}^{2}-{c}^{2}}{ac}$=$\frac{cos(A+C)}{sinAcosA}$
(1)求角A;
(2)若b2=c2+$\frac{1}{2}$a2,求sin(B-C)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.为了整顿道路交通秩序,某地考虑将对行人闯红灯进行处罚.为了了解市民的态度,在普通行人中随机选取了200人进行调查,当不处罚时,有80人会闯红灯,处罚时,得到如下数据:
 处罚金额x(单位:元) 0 5 10 15 20
 会闯红灯的人数y 80 50 40 20 10
若用表中数据所得频率代替率.
(Ⅰ)当罚金定为10元时,行人闯红灯的概率会比不进行处罚降低多少?
(Ⅱ)将选取的200人中会闯红灯的市民两类:A类市民在罚金不超过10元时就会改正行为;B类是其他市民.现对A类与B类市民按分层抽样的方法抽取4人依次进行深度问卷,则前两位均为B类市民的概率是多少?

查看答案和解析>>

同步练习册答案