精英家教网 > 高中数学 > 题目详情

(福建卷文21)已知函数的图象过点(-1,-6),且函数的图象关于y轴对称.

(Ⅰ)求mn的值及函数y=f(x)的单调区间;

(Ⅱ)若a>0,求函数y=f(x)在区间(a-1,a+1)内的极值.

【标准答案】

解:(1)由函数f(x)图象过点(-1,-6),得m-n=-3, ……①

f(x)=x3+mx2+nx-2,得f′(x)=3x2+2mx+n,

g(x)=f′(x)+6x=3x2+(2m+6)x+n;

g(x)图象关于y轴对称,所以-=0,所以m=-3,

代入①得n=0.

于是f(x)=3x2-6x=3x(x-2).

f(x)>得x>2或x<0,

f(x)的单调递增区间是(-∞,0),(2,+∞);

f(x)<0得0<x<2,

f(x)的单调递减区间是(0,2).

(Ⅱ)由(Ⅰ)得f(x)=3x(x-2),

f(x)=0得x=0或x=2.

x变化时,f(x)、f(x)的变化情况如下表:

X

(-∞.0)

0

(0,2)

2

(2,+ ∞)

f(x)

+

0

0

f(x)

极大值

极小值

由此可得:

当0<a<1时,f(x)在(a-1,a+1)内有极大值f(O)=-2,无极小值;

a=1时,f(x)在(a-1,a+1)内无极值;

当1<a<3时,f(x)在(a-1,a+1)内有极小值f(2)=-6,无极大值;

a≥3时,f(x)在(a-1,a+1)内无极值.

综上得:当0<a<1时,f(x)有极大值-2,无极小值,当1<a<3时,f(x)有极小值-6,无极大值;当a=1或a≥3时,f(x)无极值.

【试题解析】

【高考考点】本小题主要考察函数的奇偶性、单调性、极值、导数、不等式等基础知识,考查运用导数研究函数性质的方法,以及分类与整合、转化与化归等数学思想方法,考查分析问题和解决问题的能力.

【易错提醒】对于a的讨论标准找不到或对其讨论不全造成结果错误.

【备考提示】分类讨论思想在数学中是非常重要的思想之一,所以希望能加强这方面的训练.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(福建卷文21)已知函数的图象过点(-1,-6),且函数的图象关于y轴对称.

(Ⅰ)求mn的值及函数y=f(x)的单调区间;

(Ⅱ)若a>0,求函数y=f(x)在区间(a-1,a+1)内的极值.

查看答案和解析>>

同步练习册答案