【题目】已知函数f(x)=.
(1)求f(x)的定义域及最小正周期;
(2)求f(x)的单调递增区间.
【答案】(1) 详见解析;(2) [kπ-,kπ)∪(kπ,kπ+]k∈Z.
【解析】试题分析:(1)根据正弦函数的性质求出函数的定义域,再根据二倍角公式和两角和与差的正弦公式化简,得到函数的最小正周期;(2)由正弦函数的单调区间求解即可.
试题解析:
(1)由sinx≠0得x≠kπ(k∈Z),故f(x)的定义域为{x|x∈R且x≠kπ,k∈Z}.
∴f(x)=
=2cosx(sinx-cosx)=sin2x-cos2x-1
=sin(2x-)-1,∴f(x)的最小正周期T==π.
(2)函数y=sinx的单调递增区间为[2kπ-,2kπ+](k∈Z).
由2kπ-≤2x-≤2kπ+,x≠kπ(k∈Z),
得kπ-≤x≤kπ+,x≠kπ(k∈Z).
∴f(x)的单调递增区间为[kπ-,kπ)∪(kπ,kπ+]k∈Z.
点睛:本题考查三角函数的图象与性质,以及同角三角函数的基本关系,属于中档题目.三角函数的化简往往利用诱导公式,两角和与差的公式以及二倍角公式化为函数形式,再根据正弦函数的有界性,单调区间,周期性和对称性等求解.
科目:高中数学 来源: 题型:
【题目】(本小题12分)甲、乙两位学生参加数学竞赛培训,在培训期间,他们参加的5项预赛成绩记录如下:
甲 | 82 | 82 | 79 | 95 | 87 |
乙 | 95 | 75 | 80 | 90 | 85 |
(1)从甲、乙两人的成绩中各随机抽取一个,求甲的成绩比乙高的概率;
(2)现要从中选派一人参加数学竞赛,从统计学的角度考虑,你认为选派哪位学生参加合适?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两家商场对同一种商品开展促销活动,对购买该商品的顾客两家商场的奖励方案如下:
甲商场:顾客转动如图所示圆盘,当指针指向阴影部分(图中两个阴影部分均为扇形,且每个扇形圆心角均为,边界忽略不计)即为中奖·
乙商场:从装有2个白球、2个蓝球和2个红球的盒子中一次性摸出1球(这些球除颜色外完全相同),它是红球的概率是,若从盒子中一次性摸出2球,且摸到的是2个相同颜色的球,即为中奖.
(Ⅰ)求实数的值;
(Ⅱ)试问:购买该商品的顾客在哪家商场中奖的可能性大?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】小明同学在寒假社会实践活动中,对白天平均气温与某家奶茶店的品牌饮料销量之间的关系进行了分析研究,他分别记录了1月11日至1月15日的白天气温()与该奶茶店的品牌饮料销量(杯),得到如表数据:
日期 | 1月11号 | 1月12号 | 1月13号 | 1月14号 | 1月15号 |
平均气温() | 9 | 10 | 12 | 11 | 8 |
销量(杯) | 23 | 25 | 30 | 26 | 21 |
(1)若先从这五组数据中抽出2组,求抽出的2组数据恰好是相邻2天数据的概率;
(2)请根据所给五组数据,求出关于的线性回归方程式;
(3)根据(2)所得的线性回归方程,若天气预报1月16号的白天平均气温为,请预测该奶茶店这种饮料的销量.
(参考公式:,)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的前项和为,且满足,求数列的通项公式.勤于思考的小红设计了下面两种解题思路,请你选择其中一种并将其补充完整.
思路1:先设的值为1,根据已知条件,计算出_________, __________, _________.
猜想: _______.
然后用数学归纳法证明.证明过程如下:
①当时,________________,猜想成立
②假设(N*)时,猜想成立,即_______.
那么,当时,由已知,得_________.
又,两式相减并化简,得_____________(用含的代数式表示).
所以,当时,猜想也成立.
根据①和②,可知猜想对任何N*都成立.
思路2:先设的值为1,根据已知条件,计算出_____________.
由已知,写出与的关系式: _____________________,
两式相减,得与的递推关系式: ____________________.
整理: ____________.
发现:数列是首项为________,公比为_______的等比数列.
得出:数列的通项公式____,进而得到____________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙、丙、丁四个物体同时从某一点出发向同一个方向运动,其路程关于时间的函数关系式分别为, , , ,有以下结论:
①当时,甲走在最前面;
②当时,乙走在最前面;
③当时,丁走在最前面,当时,丁走在最后面;
④丙不可能走在最前面,也不可能走在最后面;
⑤如果它们一直运动下去,最终走在最前面的是甲.
其中,正确结论的序号为 (把正确结论的序号都填上,多填或少填均不得分).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,.
(Ⅰ)当a=2时,求(x)在x∈[1,e2]时的最值(参考数据:e2≈7.4);
(Ⅱ)若,有f(x)+g(x)≤0恒成立,求实数a的值;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com