精英家教网 > 高中数学 > 题目详情
圆C1:(x-6)2+y2=1和圆C2:(x-3)2+(y-4)2=36的位置关系是(  )
A、外切B、相交C、内切D、内含
考点:圆与圆的位置关系及其判定
专题:计算题,直线与圆
分析:求出两个圆的圆心与半径,判断两个圆的圆心距离与半径和与差的关系即可判断两个圆的位置关系.
解答: 解:因为圆C1:(x-6)2+y2=1的圆心坐标(6,0),半径为1,
圆C2:(x-3)2+(y-4)2=36的圆心坐标(3,4),半径为6,
所以圆心距为
(6-3)2+(0-4)2
=5,
因为5=6-1,
所以两个圆的关系是内切.
故选C
点评:本题考查两个圆的位置关系的应用,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对称问题
①点关于点对称,如(x0,y0)关于(a,b)对称点为
 

②点关于线对称,如(1,2)关于y=3x对称点为
 
.特别地,(x0,y0)关于直线y=x对称的点为
 
,(x0,y0)关于直线y=-x对称的点为
 

③线关于点对称:如直线Ax+By+C=0关于点(x0,y0)对称的直线为
 

④线关于线对称:如:直线Ax+By+C=0关于直线y=x对称的直线方程为
 
;直线Ax+By+C=0关于直线y=-x对称的直线方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(调查某市出租车使用年限x和该年支出维修费用y(万元),得到数据如下:
使用年限x23456
维修费用y2.23.85.56.57.0
(1)求线性回归方程y=
?
b
x+
?
a
;                 
参考公式
b
=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
?
a
=
.
y
-
?
b
.
x

(2)由(1)中结论预测第10年所支出的维修费用.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数g(x)=x2-4x+9在[-2,0]上的最小值为(  )
A、5B、9C、21D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

直线l1、l2的方向向量分别为
a
=(1,2,-2),
b
=(-2,3,2),则(  )
A、l1∥l2
B、l1与l2相交,但不垂直
C、l1⊥l2
D、不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P,Q的坐标分别为(-2,0),(2,0),直线PM,QM相交于点M,且它们的斜率之积是-
1
4

(Ⅰ)求点M的轨迹方程;
(Ⅱ)过点O作两条互相垂直的射线,与点M的轨迹交于A、B两点.试判断点O到直线AB的距离是否为定值.若是请求出这个定值,若不是请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方体ABCD-A1B1C1D1的棱长为a,则
A1B
B1C
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
-1
2
+
sin
5x
2
2sin
x
2
,x∈(0,π)
(1)将f(x)表示成cosx的多项式
(2)求f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足S1>1,且6Sn=(an+1)(an+2),n∈N*
(1)求an与an+1的关系式;
(2)在满足条件的所有数列{an}中,求a2015最小值;
(3)若数列{an}各项都为正数,设数列{bn}满足an(2bn-1)=3,并记Tn为{bn}的前n项和,问:是否存在常数c使得对任意的正整数n,都有Tn≥c成立?如果存在,请写出c的取值范围;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案