精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=x2-2x+3,当0≤x≤m时,该函数有最大值3,最小值2,则实数m的取值范围是(  )
A.[1,+∞)B.[0,2]C.(-∞,2]D.[1,2]

分析 对f(x)配方得到f(x)=(x-1)2+2,从而便可看出f(0)=3,f(1)=2,f(2)=3,从而根据f(x)在[0,m]上有最大值3,最小值2,便可得到1≤m≤2,这便得出了实数m的取值范围.

解答 解:f(x)=(x-1)2+2;
x=0时,f(x)=3,x=1时,f(x)=2,x=2时,f(x)=3;
∵当0≤x≤m时,该函数有最大值3,最小值2;
∴1≤m≤2;
即实数m的取值范围为[1,2].
故选:D.

点评 配方法求二次函数在闭区间上的最大值、最小值,要熟悉二次函数的图象,并且可结合二次函数f(x)的图象.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知椭圆C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)过点(2,0),且离心率为$\frac{1}{2}$.
(1)若M(0,6),求椭圆C1上的点与点 M距离的平方的最大值;
(2)已知过原点 O的直线l与抛物线C2:${y^2}=\frac{{\sqrt{3}}}{2}x$交于 O,A两不同点,与椭圆交于 B,C两不同点,其中 B,C两点的纵坐标分别满足y B<0,yC>0,若$\overrightarrow{{B}{O}}=\overrightarrow{C{A}}$,试求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知空间中三点A(1,0,0),B(2,1,-1),C(0,-1,2),则点C到直线AB的距离为$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.点A(0,2)是圆O:x2+y2=16内定点,B,C是这个圆上的两动点,若BA⊥CA,求BC中点M的轨迹方程为x2+y2-2y-6=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=$\left\{\begin{array}{l}{{e}^{x},x<0}\\{x+m,x≥0}\end{array}\right.$,以下说法正确的是(  )
A.?m∈R,函数f(x)在定义域上单调递增B.?m∈R,函数f(x)存在零点
C.?m∈R,函数f(x)有最大值D.?m∈R,函数f(x)没有最小值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知f(x)是定义在R上的不恒为零的函数,且对任意的a,b∈R都满足:f(a•b)=af(b)+bf(a),若f(2)=2,Un=f(2n)(n∈N*
(1)求Ul,U2,U3的值.     
(2)求证:Un+1>Un

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,AB是圆O的直径,AC是弦,∠BAC的平分线AD交圆O于点D,DE⊥AC,交AC的延长线于点E,OE交AD于点F.
(1)求证:DE是圆O的切线;
(2)若∠CAB=60°,⊙O的半径为2,EC=1,求DE的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知$\overrightarrow{AB}$=(-1,-2),$\overrightarrow{BC}$=(-3,-4),则$\overrightarrow{CA}$=(  )
A.(4,6)B.(-4,-6)C.(2,2)D.(-2,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数f(x)=$\sqrt{lg(4-x)}$的定义域为(-∞,3],值域为[0,+∞).

查看答案和解析>>

同步练习册答案