精英家教网 > 高中数学 > 题目详情
4.已知圆C:(x-3)2+(y-4)2=4,直线l1过定点A(1,0).
(1)若l1与圆C相切,求l1的方程;
(2)若l1的倾斜角为$\frac{π}{4}$,l1与圆C相交于P、Q两点,求线段PQ的中点M的坐标.

分析 (1)由直线l1与圆相切,则圆心到直线的距离等于半径,求得直线方程,注意分类讨论;
(2)l1的方程为y=x-1,过圆心C与l1垂直的方程为y-4=-(x-3),联立两个方程可得线段PQ的中点M的坐标.

解答 解:(1)①若直线l1的斜率不存在,即直线x=1,符合题意.
②若直线l1斜率存在,设直线l1为y=k(x-1),即kx-y-k=0.
由题意知,圆心(3,4)到已知直线l1的距离等于半径2,
即$\frac{|3k-4-k|}{\sqrt{{k}^{2}+1}}$=2,解之得k=$\frac{3}{4}$.
所求直线方程是x=1,3x-4y-3=0.
(2)l1的方程为y=x-1,过圆心C与l1垂直的方程为y-4=-(x-3)
联立两个方程可得x=4,y=3,
∴线段PQ的中点M的坐标为(4,3).

点评 本题主要考查直线与圆的位置关系以及直线与直线的交点,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.设向量$\overrightarrow{a}$=(k,2),$\overrightarrow{b}$=(1,-1),且$\overrightarrow{a}$∥$\overrightarrow{b}$,则实数k的值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知命题p:函数y=x2+mx+1在(-1,+∞)上单调递增,命题q:对函数y=-4x2+4(2-m)x-1,y≤0恒成立.若p∨q为真,p∧q为假,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某休闲广场中央有一个半径为1(百米)的圆形花坛,现计划在该花坛内建造一条六边形观光步道,围出一个由两个全等的等腰梯形(梯形ABCF和梯形DEFC)构成的六边形ABCDEF区域,其中A、B、C、D、E、F都在圆周上,CF为圆的直径(如图).设∠AOF=θ,其中O为圆心.
(1)把六边形ABCDEF的面积表示成关于θ的函数f(θ);
(2)当θ为何值时,可使得六边形区域面积达到最大?并求最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知圆C:x2+y2-8y+12=0,直线l:ax+y+2a=0.
(1)当a为何值时,直线l与圆C相切;
(2)若直线l过点(0,2)与圆C相交于点A、B,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.直线3x-y+1=0在y轴上的截距是$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=4x+a•2x+b,
(1)若f(0)=1,f(-1)=-$\frac{5}{4}$,求f(x)的解析式;
(2)由(1)当0≤x≤2时,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知方程$\frac{x^2}{k-3}+\frac{y^2}{2-k}=1$表示焦点在y轴上的双曲线,则k的取值范围为k<2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.双曲线x2-y2=1的离心率为$\sqrt{2}$.

查看答案和解析>>

同步练习册答案