精英家教网 > 高中数学 > 题目详情
已知
(1)求的值;
(2)求函数的值域.
(1),(2).

试题分析:(1)本题有两个化简方向,一是展开,利用同角三角函数关系求角,即,结合解得,二是利用角的关系,即(2)研究函数性质,首先化为一元函数,即利用二倍角公式化简得:,因为,所以值域为
试题解析:(1)因为,且,所以
因为
.所以.        6
(2)由(1)可得. 所以
. 因为,所以,当时,取最大值;当时,取最小值
所以函数的值域为.                     14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数时取得最大值4.
(1)求的最小正周期;
(2)求的解析式;
(3)若,求的值域.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式其中为常数。己知销售价格为5元/千克时,每日可售出该商品11千克.
(1)求的值;
(2)若该商品的成本为3元/千克,试确定销售价格的值,使商场每日销售该商品所获得的利润最大.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某幼儿园准备建一个转盘,转盘的外围是一个周长为k米的圆.在这个圆上安装座位,且每个座位和圆心处的支点都有一根直的钢管相连经预算,转盘上的每个座位与支点相连的钢管的费用为3k元/根,且当两相邻的座位之间的圆弧长为x米时,相邻两座位之间的钢管和其中一个座位的总费用为k元.假设座位等距分布,且至少有两个座位,所有座位都视为点,且不考虑其他因素,记转盘的总造价为y元.
(1)试写出y关于x的函数关系式,并写出定义域;
(2)当k=50米时,试确定座位的个数,使得总造价最低?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)的定义域为(-1,0),则函数f(2x+1)的定义域为(   )
A.(-1, 1)
B.
C.(-1,0)
D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数的定义域为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)=x+-3,x∈[1,2].
(1)当b=2时,求f(x)的值域;
(2)若b为正实数,f(x)的最大值为M,最小值为m,且满足M-m≥4,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数f(x)=的定义域为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数的定义域是(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案