【题目】如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,PA=AB=AD=2,四边形ABCD满足AB⊥AD,BC∥AD且BC=4,点M为PC的中点,点E为BC边上的点,且 =λ.
(1)求证:平面ADM⊥平面PBC;
(2)是否存在实数λ,使得二面角P﹣DE﹣B的余弦值为 ?若存在,求出实数λ的值,若不存在,请说明理由.
【答案】
(1)证明:取PB中点N,连结MN,AN,
∵M是PC中点,∴MN∥BC,MN= ,
又∵BC∥AD,∴MN∥AD,MN=AD,
∴四边形ADMN为平行四边形,
∵AP⊥AD,AB⊥AD,∴AD⊥平面PAB,
∴AD⊥AN,∴AN⊥MN,
∵AP=AB,∴AN⊥PB,∴AN⊥平面PBC,
∵AN平面ADM,∴平面ADM⊥平面PBC.
(2)解:存在实数λ=1,使得二面角P﹣DE﹣B的余弦值为 .
∵λ=1,∴点E为BC边的中点,
∴DE∥AB,∴DE⊥平面PAD,
∴∠PDA为二面角P﹣DE﹣B的一个平面角,
在等腰Rt△PDA中,∠PDA= ,
∴二面角P﹣DE﹣B的余弦值为 .
【解析】(1)取PB中点N,连结MN,AN,推导出四边形ADMN为平行四边形,由AP⊥AD,AB⊥AD,得AD⊥AN,AN⊥MN,由此能证明平面ADM⊥平面PBC.(2)λ=1时,点E为BC边的中点,∠PDA为二面角P﹣DE﹣B的一个平面角,由此推导出二面角P﹣DE﹣B的余弦值为 .
【考点精析】本题主要考查了平面与平面垂直的判定的相关知识点,需要掌握一个平面过另一个平面的垂线,则这两个平面垂直才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】关于函数,下列命题中所有正确结论的序号是______.
①其图象关于轴对称; ②当时,是增函数;当时,是减函数;
③的最小值是; ④在区间上是增函数;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,AB//CD,且
(1)证明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,且四棱锥P-ABCD的体积为,求该四棱锥的侧面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知中心在原点的椭圆与双曲线有公共焦点,且左、右焦点分别为F1、F2 , 这两条曲线在第一象限的交点为P,△PF1F2 是以PF1为底边的等腰三角形.若|PF1|=10,椭圆与双曲线的离心率分别为e1、e2 , 则e1e2 的取值范围为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义域为R的奇函数f(x),当x>0时,f(x)=ax2+bx+8(0<a<4),点A(2,0)在函数f(x)的图象上,且关于x的方程f(x)+1=0有两个相等的实根.
(1)求函数f(x)解析式;
(2)若x∈[t,t+2](t>0)时,函数f(x)有最小值1,求实数t的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)若函数的值域为[0,+∞),求实数a的取值范围;
(2)若关于x的不等式F(x)>af(x)+12恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)若m=0,求函数f(x)的定义域;
(2)若函数f(x)的值域为R,求实数m的取值范围;
(3)若函数f(x)在区间上是增函数,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】执行如图所示的程序框图,则“3<m<5”是“输出i的值为5”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分7分)选修4-4:坐标系与参数方程
在平面直角坐标系中,直线的参数方程为为参数),P、Q分别为直线与x轴、y轴的交点,线段PQ的中点为M.
(Ⅰ)求直线的直角坐标方程;
(Ⅱ)以坐标原点O为极点,轴的正半轴为极轴建立极坐标系,求点M的极坐标和直线OM的极坐标方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com