精英家教网 > 高中数学 > 题目详情

在△ABC中,内角A、B、C所对的边分别为a、b、c,已知数学公式数学公式,且c=1.
(Ⅰ)求tan(B+C);
(Ⅱ)求a的值.

解:(I)因为,(3分)
代入得到,;(6分)
(II)因为A=180°-B-C,(7分)
所以tanA=tan[180°-(B+C)]=-tan(B+C)=-1,(19分)
又0°<A<180°,所以A=135°.(10分)
因为,且0°<C<180°,
所以,(11分)
,得.(13分)
分析:(I)根据两角和的正切函数公式化简所求的式子,将tanB和tanC的值代入即可求出值;
(II)由三角形的内角和定理得到A=180°-B-C,然后根据诱导公式及tan(B+C)的值即可得到tanA的值,根据A的范围,利用特殊角的三角函数值即可得到A的度数,然后由tanC的值,利用同角三角函数间的基本关系求出sinC的值,由sinC,sinA,c的值,利用正弦定理即可求出a的值.
点评:此题考查学生灵活运用两角和的正切函数公式及诱导公式化简求值,灵活运用正弦定理、同角三角函数间的基本关系化简求值,是一道中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•天津)在△ABC中,内角A,B,C所对的边分别是a,b,c,已知a=2,c=
2
,cosA=-
2
4

(1)求sinC和b的值;
(2)求cos(2A+
π
3
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A、B、C所对边长分别为a、b、c,已知a2-c2=b,且sinAcosC=3cosAsinC,则b=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C的对边分别为a,b,c,且a,b是方程x2-2
3
x+2=0的两根,2cos(A+B)=1,则△ABC的面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C所对的边分别是a,b,c.已知A=45°,a=6,b=3
2
,则B的大小为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C所对的边分别是a,b,c,已知B=60°,不等式x2-4x+1<0的解集为{x|a<x<c},则b=
13
13

查看答案和解析>>

同步练习册答案