精英家教网 > 高中数学 > 题目详情
9.运动员小王在一个如图所示的半圆形水域(O为圆心,AB是半圆的直径)进行体育训练,小王先从点A出发,沿着线段AP游泳至半圆上某点P处,再从点P沿着弧PB跑步至点B处,最后沿着线段BA骑自行车回到点A处,本次训练结束.已知OA=1500m,小王游泳、跑步、骑自行车的平均速度分别为2m/s,4m/s,10m/s,设∠PAO=θrad.
(1)若$θ=\frac{π}{3}$,求弧PB的长度;
(2)试将小王本次训练的时间t表示为θ的函数t(θ),并写出θ的范围;
(3)请判断小王本次训练时间能否超过40分钟,并说明理由.
(参考公式:弧长l=rα,其中r为扇形半径,α为扇形圆心角.)

分析 (1)求出∠POB的弧度,从而求出PB的长度即可;
(2)根据PB的长,求出t(θ)的解析式即可;(3)求出函数的导数,根据函数的单调性求出t(θ)的最大值,带入计算比较即可.

解答 解:(1)∵$∠POB=2θ=\frac{π}{3}$,
∴$\widehat{PB}=OA•\frac{π}{3}=500π$m.                    
(2)在OAP中,AP=2OAcosθ=3000cosθ,
在扇形OPB中,$\widehat{PB}=OA•(2θ)=3000θ$,
又BA=2OA=3000,
∴小王本次训练的总时间:
$t(θ)=\frac{AP}{2}+\frac{{\widehat{PB}}}{4}+\frac{BA}{10}=\frac{3000cosθ}{2}+\frac{3000θ}{4}+\frac{3000}{10}$
=$1500(cosθ+\frac{θ}{2})+300$,$θ∈(0,\frac{π}{2})$,
(3)由(2)得:$t'(θ)=-1500(sinθ-\frac{1}{2})$,
令t'(θ)=0,得$sinθ=\frac{1}{2}$,∴$θ=\frac{π}{6}$,
列表如下,

θ$(0,\frac{π}{6})$$\frac{π}{6}$$(\frac{π}{6},\frac{π}{2})$
t'(θ)+0-
t(θ)极大值
从上表可知,当$θ=\frac{π}{6}$时,t(θ)取得极大值,且是最大值,
∴t(θ)的最大值是$t(\frac{π}{6})=1500(cos\frac{π}{6}+\frac{π}{12})+300=750\sqrt{3}+125π+300$,
(3)∵$\sqrt{3}<2$,π<3.2,
∴$t(\frac{π}{6})<750×2+125×3.2+300=2200$,
∵2200<40×60,∴小王本次训练时间不能超到40分钟.

点评 本题考查了弧长公式,考查函数的单调性、最值问题,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知抛物线C与双曲线x2-y2=1有相同的焦点,且顶点在原点,则抛物线C的方程为(  )
A.y2=±2$\sqrt{2}$xB.y2=±2xC.y2=±4xD.y2=±4$\sqrt{2}$x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列直线中,与直线2x+y+1=0平行且与圆x2+y2=5相切的是(  )
A.2x+y+5=0B.x-2y+5=0C.$2x+y+5\sqrt{5}=0$D.$x-2y+5\sqrt{5}=0$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)已知抛物线y2=2px(p>0)的焦点在直线2x-y-4=0上,求p的值;
(2)已知双曲线的渐近线方程为$y=±\frac{3}{4}x$,准线方程为$x=±\frac{16}{5}$,求双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若复数z满足|z|=1(i为虚数单位),则|z-2i|的最小值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某公司门前有一排9个车位的停车场,从左往右数第三个,第七个车位分别停着A车和B车,同时进来C,D两车,在C,D不相邻的条件下,C和D至少有一辆与A和B车相邻的概率是(  )
A.$\frac{10}{17}$B.$\frac{14}{17}$C.$\frac{9}{16}$D.$\frac{7}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知二次函数f(x)=ax2-(2a-1)x-lnx(a为常数,a≠1).
(Ⅰ)当a<0时,求函数f(x)在区间[1,2]上的最大值;
(Ⅱ)记函数y=f(x)图象为曲线C,设点A(x1,y1),B(x2,y2)是曲线C上不同的两点,点M为线段AB的中点,过点M作x轴的垂线交曲线C于点N.判断曲线C在点N处的切线是否平行于直线AB?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(I)化简求值:${log_{\frac{1}{3}}}\sqrt{27}+lg25+lg4+{7^{-{{log}_7}2}}+{(-0.98)^0}$;
(II)已知角α的终边上一点$P(\sqrt{2},-\sqrt{6})$,求值:$\frac{{cos(\frac{π}{2}+α)cos(2π-α)+sin(-α-\frac{π}{2})cos(π-α)}}{{sin(π+α)cos(\frac{π}{2}-α)}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.双曲线$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{k}$=1的实轴长为8,离心率e∈(1,2),则k的取值范围是(  )
A.(-∞,0)B.(-48,0)C.(-192,0)D.(-60,-48)

查看答案和解析>>

同步练习册答案