精英家教网 > 高中数学 > 题目详情
(2013•自贡一模)如图,四棱锥P-ABCD的底ABCD是矩形,PA⊥平面ABCD,AD=2,AB=1,E,F分别是AB,BC的中点N在轴上
(I)求证:PF⊥FD;
(II)在PA上找一点G,使得EG∥平面PFD.
分析:(1)连接AF,证明DF⊥平面PAF,即可证得PF⊥FD.
(2)过E点作EH∥DF交AD于点H,过H点作HG∥PD,交PD于点G,连接EG,证明平面EHG∥平面PDF,得EG∥平面PDF,从而得点G得位置.
解答:解析:(Ⅰ)连接AF,则AF=
2
,DF=
2

又AD=2,∴DF2+AF2=AD2
∴DF⊥AF.
又PA⊥平面ABCD,DF?平面ABCD
∴DF⊥PA
又∵PA?平面PAF,AF?平面PAF,PA∩AF=A
∴DF⊥平面PAF
∵PF?平面PAF
∴PF⊥FD
(Ⅱ)如图,过点E作EH∥FD交AD于点H,则EH∥平面PFD且AH=
1
4
AD.
再过点H作HG∥DP交PA于点G,则HG∥平面PFD且AG=
1
4
AP,
∵EH?平面EHG,HG?平面EHG,EH∩HG=H
∴平面EHG∥平面PFD.
∵EG?平面EHG
∴EG∥平面PFD.
从而满足AG=
1
4
AP的点G为所求.
点评:本题主要考查了线面垂直的判定及性质、面面平行的判定及性质,解题中要注意线线、线面、面面关系的转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•自贡一模)已知函数f(x)=  
x+1
,  x
≤0,
log2x
,x>0
则函数y=f[f(x)]+1的零点个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•自贡一模)运行如图所示的程序框图,则输出s的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•自贡一模)复数
1+i
4+3i
的虚部是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•自贡一模)集合M={x||x-3|<4},N={x|x2+x-2<0,x∈Z},则 M∩N(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•自贡一模)如图,四棱锥P-ABCD的底ABCD是矩形,PA⊥平面ABCD,AD=2,AB=1,E,F分别是AB,BC的中点N在轴上.
(I)求证:PF⊥FD;
(II)在PA上找一点G,使得EG∥平面PFD;
(III)若PB与平面ABCD所成的角为45°,求二面角A-PD-F的余弦值.

查看答案和解析>>

同步练习册答案