精英家教网 > 高中数学 > 题目详情

 函数,其中,在[0,1]上是减函数,则实数的取值范围是

                        (    )

    A.(1,2)      B.(0,2)      C.(0,1)      D.

 

【答案】

 A 

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为[-1,5],部分对应值如下表.
x -1 0 2 4 5
f(x) 1 2 0 2 1
f(x)的导函数y=f′(x)的图象如图所示.下列关于函数f(x)的命题:
①函数f(x)在[0,1]上是减函数;
②如果当x∈[-1,t]时,f(x)最大值是2,那么t的最大值为4;
③函数y=f(x)-a有4个零点,则1≤a<2;
④若f(x)在[-1,5]上的极小值为-2,且 y=t与f(x)有两个交点,则-2<t<1.
其中真命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a
b
,其中
a
=(2cosx,
3
sinx)
b
=(cosx,-2cosx)

(1)求函数f(x)在[0,π]上的单调递增区间和最小值;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,且f(A)=-1,求
b-2c
a•cos(60°+C)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

①命题“有的三角形是直角三角形”的否定为“所有的三角形都不是直角三角形”;②若关于x的不等式ax2-2x-1<0在[1,+∞)内有解,则实数a的取值范围是(-∞,3);③已知函数f(x)=sin(2x+θ)(θ∈R),且对任意的x∈R,f(
π
2
-x)=-f(x)
,则sin(2θ)=0;④函数f(x)=cosx+
1
cosx
在(0,
π
2
)
内的最小值为2.其中正确的命题的序号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数,其中,在[0,1]上是减函数,则实数的取值范围是

                                                                                                                               (    )

       A.(1,2)       B.(0,2)        C.(0,1)       D.

查看答案和解析>>

同步练习册答案