精英家教网 > 高中数学 > 题目详情

【题目】某工厂拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为米,高为米,体积为立方米.假设建造成本仅与表面积有关,侧面的建造成本为100/平方米,底面的建造成本为160/平方米,该蓄水池的总建造成本为元(为圆周率).该蓄水池的体积最大时______.

【答案】8

【解析】

由已知中侧面积和底面积的单位建造成本,结合圆柱体的侧面积及底面积公式,根据该蓄水池的总建造成本为元,构造方程并整理,可将表示,从而可表示成的函数,结合实际求出的范围,利用导数求出的最大值,计算最大时的值.

蓄水池侧面的总成本为元,底面的总成本为元,

蓄水池的总成本为.

又根据题意得

,从而.

,又由可得

函数的定义域为

,解得(因,舍去).

时,,故上为增函数;

时,,故上为减函数.

由此可知,处取得最大值,此时.

故答案为:8.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】《张丘建算经》是中国古代的著名数学著作,该书表明:至迟于公元5世纪,中国已经系统掌握等差数列的相关理论,该书上卷22题又女工善织问题今有女善织,日益功疾,初日织五尺,今一月曰织九匹三丈,问日益几何?,大概意思是:有一个女工人善于织布,每天织布的尺数越来越多且成等差数列,第一天知5尺,30天共织九匹三丈,问每天增加的织布数目是多少寸?答案是__________.(注:当时一匹为四丈,一丈为十尺,一尺为十寸,结果四舍五入精确到寸)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】坐标系与参数方程:在平面直角坐标系中,以原点为极点,轴的非负半轴为极轴建立极坐标系,已知点的极坐标为,直线的极坐标方程为,且点在直线

)求的值和直线的直角坐标方程及的参数方程;

)已知曲线的参数方程为,(为参数),直线交于两点,求的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正三棱柱的所有棱长都为的中点,边上,.

1)证明:平面平面

2)若是侧面内的动点,且平面.

①在答题卡中作出点的轨迹,并说明轨迹的形状(不需要说明理由);

②求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥PABCD中,△PAB是边长为2的等边三角形,底面ABCD为直角梯形,ABCDABBCBCCD1PD.

1)证明:ABPD.

2)求二面角APBC的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场一年中各月份的收入、支出情况的统计如图所示,下列说法中正确的是______.

①2至3月份的收入的变化率与11至12月份的收入的变化率相同;

②支出最高值与支出最低值的比是6:1;

③第三季度平均收入为50万元;

④利润最高的月份是2月份。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有两个零点,且.

1)求的取值范围;

2)证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在四边形中,.沿着翻折至的位置,平面,连结,如图2.

1)当时,证明:平面平面

2)当三棱锥的体积最大时,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正四棱锥的底边长为2,侧棱长为上一点,且,点分别为上的点,且.

1)证明:平面平面

2)求锐二面角的余弦值.

查看答案和解析>>

同步练习册答案