精英家教网 > 高中数学 > 题目详情
过椭圆
x2
a2
+
y2
b2
=1(0<b<a)中心的直线与椭圆交于A、B两点,右焦点为F2(c,0),则△ABF2的最大面积是(  )
A、abB、bc
C、acD、b2
分析:先设点A,B的纵坐标,然后表示出△ABF2的面积,根据|OF2|为定值c将问题转化为求y1的最大值的问题,根据|y1|的范围可求得最后答案.
解答:解:设面积为S,点A的纵坐标为y1,由于直线过椭圆中心,故B的纵坐标为-y1
三角形的面积S=
1
2
|OF2||y1|+
1
2
|OF2||-y1|=|OF2||y1|
由于|OF2|为定值c,三角形的面积只与y1有关,
又由于|y1|≤b,
显然,当|y1|=b时,三角形的面积取到最大值,为bc,
此时,直线为y轴
故选B.
点评:本题主要考查椭圆的基本性质的应用和三角形面积的最大值问题.直线与圆锥曲线的综合题是高考的重点也是热点问题,每年必考,一定要好好准备.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1
,(a>b>0)的两焦点分别为F1、F2|F1F2|=4
2
,离心率e=
2
2
3
.过直线l:x=
a2
c
上任意一点M,引椭圆C的两条切线,切点为A、B.
(1)在圆中有如下结论:“过圆x2+y2=r2上一点P(x0,y0)处的切线方程为:x0x+y0y=r2”.由上述结论类比得到:“过椭圆
x2
a2
+
y2
b2
=1
(a>b>0),上一点P(x0,y0)处的切线方程”(只写类比结论,不必证明).
(2)利用(1)中的结论证明直线AB恒过定点(2
2
,0
);
(3)当点M的纵坐标为1时,求△ABM的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•宁波模拟)已知:圆x2+y2=1过椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的两焦点,与椭圆有且仅有两个公共点:直线y=kx+m与圆x2+y2=1相切,与椭圆
x2
a2
+
y2
b2
=1
相交于A,B两点记λ=
OA
OB
,且
2
3
≤λ≤
3
4

(Ⅰ)求椭圆的方程;
(Ⅱ)求k的取值范围;
(Ⅲ)求△OAB的面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:圆x2+y2=1过椭圆
x2
a2
+
y2
b2
=1(a>b>0)的两焦点,与椭圆有且仅有两个公共点:直线y=kx+m与圆x2+y2=1相切,与椭圆
x2
a2
+
y2
b2
=1相交于A,B两点记λ=
OA
OB
,且
2
3
≤λ≤
3
4

(1)求椭圆的方程;
(2)求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(如图)过椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左焦点F任作一条与两坐标轴都不垂直的弦AB;若点M在x轴上,且使得MF为△AMB的一条内角平分线,则称点M为该椭圆的“左特征点”.
(1)求椭圆
x2
5
+y2
=1的“左特征点”M的坐标.
(2)试根据(1)中的结论猜测:椭圆
x2
a2
+
y2
b2
=1(a>b>0)的“左特征点”M是一个怎么样的点?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

过椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左顶点A做圆x2+y2=b2的切线,切点为B,延长AB交抛物线于y2=4ax于点C,若点B恰为A、C的中点,则
a
b
的值为
1+
5
2
1+
5
2

查看答案和解析>>

同步练习册答案