精英家教网 > 高中数学 > 题目详情

(本题满分12分)

已知函数,为实数,.

(Ⅰ)若在区间上的最小值、最大值分别为、1,求的值;

(Ⅱ)在(Ⅰ)的条件下,求经过点且与曲线相切的直线的方程;

(Ⅲ)设函数,试判断函数的极值点个数.

 

【答案】

(Ⅰ)为所求. (Ⅱ)

(Ⅲ)当时,,函数为单调递增,极值点个数为0;

时,此时方程有两个不相等的实数根,根据极值点的定义,

可知函数有两个极值点.

【解析】本试题主要考查了导数在研究函数中的运用。

(1)因为函数,为实数,.求解导数。判定单调性和最值,结合在区间上的最小值、最大值分别为、1得到参数的值;

(2)在(Ⅰ)的条件下,先求解导数值,然后得到经过点且与曲线相切的直线的方程;

(Ⅲ)设函数,函数的极值点个数就是分析单调性来得到结论。

解:(Ⅰ)由,得

∴ 当时,递增;

时, 递减.

在区间上的最大值为,∴.……………………2分

,∴

由题意得,即,得

为所求.                 ………………………………4分

(Ⅱ)解:由(1)得,点在曲线上.

⑴ 当切点为时,切线的斜率

的方程为,即. ……………………5分

⑵当切点不是切点时,设切点为

切线的斜率

的方程为

又点上,∴

,即,∴

 ∴ 切线的方程为

故所求切线的方程为.  ………………………………8分

(Ⅲ)解:

二次函数的判别式为

,得:

,得    ………………………………10分

∴当时,,函数为单调递增,极值点个数为0;

时,此时方程有两个不相等的实数根,根据极值点的定义,

可知函数有两个极值点.               ………………………………12分

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

( 本题满分12分 )
已知函数f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分12分)已知数列是首项为,公比的等比数列,,

,数列.

(1)求数列的通项公式;(2)求数列的前n项和Sn.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年上海市金山区高三上学期期末考试数学试卷(解析版) 题型:解答题

(本题满分12分,第1小题6分,第2小题6分)

已知集合A={x| | xa | < 2,xÎR },B={x|<1,xÎR }.

(1) 求AB

(2) 若,求实数a的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年安徽省高三10月月考理科数学试卷(解析版) 题型:解答题

(本题满分12分)

设函数为常数),且方程有两个实根为.

(1)求的解析式;

(2)证明:曲线的图像是一个中心对称图形,并求其对称中心.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年重庆市高三第二次月考文科数学 题型:解答题

(本题满分12分,(Ⅰ)小问4分,(Ⅱ)小问6分,(Ⅲ)小问2分.)

如图所示,直二面角中,四边形是边长为的正方形,上的点,且⊥平面

(Ⅰ)求证:⊥平面

(Ⅱ)求二面角的大小;

(Ⅲ)求点到平面的距离.

 

查看答案和解析>>

同步练习册答案