(本题满分12分)
已知函数,为实数,.
(Ⅰ)若在区间上的最小值、最大值分别为、1,求、的值;
(Ⅱ)在(Ⅰ)的条件下,求经过点且与曲线相切的直线的方程;
(Ⅲ)设函数,试判断函数的极值点个数.
(Ⅲ)当时,,函数为单调递增,极值点个数为0;
当时,此时方程有两个不相等的实数根,根据极值点的定义,
可知函数有两个极值点.
【解析】本试题主要考查了导数在研究函数中的运用。
(1)因为函数,为实数,.求解导数。判定单调性和最值,结合在区间上的最小值、最大值分别为、1得到参数、的值;
(2)在(Ⅰ)的条件下,先求解导数值,然后得到经过点且与曲线相切的直线的方程;
(Ⅲ)设函数,函数的极值点个数就是分析单调性来得到结论。
解:(Ⅰ)由,得,.
∵,,
∴ 当时,,递增;
当时,, 递减.
∴ 在区间上的最大值为,∴.……………………2分
又,,∴ .
由题意得,即,得.
故,为所求. ………………………………4分
(Ⅱ)解:由(1)得,,点在曲线上.
⑴ 当切点为时,切线的斜率,
∴ 的方程为,即. ……………………5分
⑵当切点不是切点时,设切点为,
切线的斜率,
∴ 的方程为 .
又点在上,∴ ,
∴ ,
∴ ,
∴ ,即,∴.
∴ 切线的方程为
故所求切线的方程为或. ………………………………8分
(Ⅲ)解: .
∴
二次函数的判别式为
,
令,得:
令,得 ………………………………10分
∵,,
∴当时,,函数为单调递增,极值点个数为0;
当时,此时方程有两个不相等的实数根,根据极值点的定义,
可知函数有两个极值点. ………………………………12分
科目:高中数学 来源: 题型:
π | 2 |
查看答案和解析>>
科目:高中数学 来源:2012-2013学年上海市金山区高三上学期期末考试数学试卷(解析版) 题型:解答题
(本题满分12分,第1小题6分,第2小题6分)
已知集合A={x| | x–a | < 2,xÎR },B={x|<1,xÎR }.
(1) 求A、B;
(2) 若,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年安徽省高三10月月考理科数学试卷(解析版) 题型:解答题
(本题满分12分)
设函数(,为常数),且方程有两个实根为.
(1)求的解析式;
(2)证明:曲线的图像是一个中心对称图形,并求其对称中心.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年重庆市高三第二次月考文科数学 题型:解答题
(本题满分12分,(Ⅰ)小问4分,(Ⅱ)小问6分,(Ⅲ)小问2分.)
如图所示,直二面角中,四边形是边长为的正方形,,为上的点,且⊥平面
(Ⅰ)求证:⊥平面
(Ⅱ)求二面角的大小;
(Ⅲ)求点到平面的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com