精英家教网 > 高中数学 > 题目详情

【题目】如图,直三棱柱中,分别为的中点.

1)证明:平面

2)已知与平面所成的角为30°,求二面角的余弦值.

【答案】1)证明见解析;(2

【解析】

1)取中点,连接,根据题目条件,利用线面垂直的判定定理,得出平面,由于中点,,可证出四边形为平行四边形,得出,从而可证出平面

2)设,根据(1)可知,平面,则到平面距离,设到面距离为,根据三棱锥等体积法有,得,得,因为与平面所成的角为30°,可求出,结合线面垂直的判定定理证出平面,进而得出为二面角的平面角,只需求出,即可求出二面角的余弦值.

解:(1)取中点,连接

平面平面

平面平面

平面

中点,∴

∴四边形为平行四边形,∴

平面

2)设

到平面距离,设到面距离为

,得

,得

因为与平面所成的角为30°

所以

而在直角三角形中,

所以,解得

因为平面平面

所以

平面平面,所以

所以平面

平面平面

所以为二面角的平面角,

可得四边形是正方形,所以

所以二面角的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】【选修4-4:坐标系与参数方程】

在平面直角坐标系中,曲线的参数方程为: 为参数, ),将曲线经过伸缩变换: 得到曲线.

(1)以原点为极点, 轴的正半轴为极轴建立坐标系,求的极坐标方程;

(2)若直线为参数)与相交于两点,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司生产某种产品进行出售,当这种产品定价为每吨1000元时,每月可售出产品100.当每吨价格每增加20元时,月售出量将会减少1吨.产品每吨生产成本400元,月固定成本为20000.

(Ⅰ)当产品每吨定价为1200元时,该公司月利润是多少?

(Ⅱ)当产品每吨定价为多少元时,该公司的月利润最大?最大月利润是多少?(利润=总收入-生产成本-固定成本)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若曲线在点处与直线相切,求的值;

(2)若函数有两个零点,试判断的符号,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点在圆E上,过点的直线l与圆E相切.

求圆E的方程;

求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知曲线 为参数),在以原点为极点, 轴的非负半轴为极轴建立的极坐标系中,直线的极坐标方程为

(1)求曲线的普通方程和直线的直角坐标方程;

(2)过点且与直线平行的直线 两点,求点 两点的距离之积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,网格纸上小正方形的边长为1,粗实线和虚线画出的是某几何体的三视图,则该几何休的表面积为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直三棱柱中,分别是的中点,,则所成的角为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆的长轴为,过点的直线轴垂直,椭圆的离心率, 为椭圆的左焦点,.

Ⅰ)求此椭圆的方程;

(Ⅱ是此椭圆上异于的任意一点, , 为垂足,延长到点使得.连接并延长交直线于点, 的中点,判定直线与以为直径的圆的位置关系.

查看答案和解析>>

同步练习册答案