精英家教网 > 高中数学 > 题目详情
17.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0),F1、F2是其左右焦点,其椭圆的长轴长等于短轴长的2倍,且经过点(2,1).
(1)求椭圆的方程;
(2)P是椭圆上一点,且∠F1PF2=90°,求P点的坐标.

分析 (1)由题意可设椭圆方程为x2+4y2-4b2=0,代入点的坐标求得b,则椭圆方程可求;
(2)设出P的横坐标,利用椭圆焦半径公式可得|PF1|=$2\sqrt{2}+\frac{\sqrt{3}}{2}{x}_{0}$,|PF2|=$2\sqrt{2}-\frac{\sqrt{3}}{2}{x}_{0}$,由勾股定理求出P的横坐标,代入椭圆方程可得P的坐标.

解答 解:(1)由题意可知a=2b,则椭圆方程为x2+4y2-4b2=0,
把(2,1)代入可得:22+4×12-4b2=0,即b2=2.
∴椭圆方程为$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{2}=1$;
(2)由椭圆方程为$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{2}=1$,得a2=8,b2=2,
∴c2=a2-b2=6,则a=$2\sqrt{2}$,c=$\sqrt{6}$,$e=\frac{\sqrt{3}}{2}$,
设P的横坐标为x0,则|PF1|=$2\sqrt{2}+\frac{\sqrt{3}}{2}{x}_{0}$,|PF2|=$2\sqrt{2}-\frac{\sqrt{3}}{2}{x}_{0}$,
∵∠F1PF2=90°,
∴$|P{F}_{1}{|}^{2}+|P{F}_{2}{|}^{2}=4{c}^{2}$,即$(2\sqrt{2}+\frac{\sqrt{3}}{2}{x}_{0})^{2}+(2\sqrt{2}-\frac{\sqrt{3}}{2}{x}_{0})^{2}=4×6$,
解得${{x}_{0}}^{2}=\frac{16}{3}$,${x}_{0}=±\frac{4\sqrt{3}}{3}$.
代入$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{2}=1$,可得y=$±\frac{\sqrt{6}}{3}$.
∴P点的坐标为P($\frac{4\sqrt{3}}{3},\frac{\sqrt{6}}{3}$)、P($\frac{4\sqrt{3}}{3},-\frac{\sqrt{6}}{3}$)、P($-\frac{4\sqrt{3}}{3},\frac{\sqrt{6}}{3}$)、P($-\frac{4\sqrt{3}}{3},-\frac{\sqrt{6}}{3}$).

点评 本题考查椭圆的简单性质,考查了焦半径公式的应用,考查计算能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.设$a={2^{1.2}},b=ln2,c={log_2}\frac{1}{3}$,则a,b,c的大小顺序为(  )
A.a>b>cB.a>c>bC.b>a>cD.c>a>b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.f(x)为定义域R,图象关于原点对称,当x≥0时,f(x)=2x+2x+b(b为常数),则x<0时,f(x)解析式为(  )
A.f(x)=2x-2x-1B.f(x)=-2-x+2x+1C.f(x)=2-x-2x-1D.f(x)=-2-x-2x+1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.α,β是关于x的方程x2-2(cosθ+1)x+cos2θ=0的两个实根,且|α-β|≤2$\sqrt{2}$,求θ的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知x>0,y>0,若x+$\frac{1}{x}$+y+$\frac{9}{y}$=10,则x+y的最小值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(2-x),x<2}\\{{x}^{\frac{2}{3},}x≥2}\end{array}\right.$则不等式f(3x+1)<4的解集为(-5,$\frac{7}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=1nx,g(x)=-$\frac{1}{x}$.判断曲线y=f(x)与曲线y=g(x)(x<0)的公共切线(与两曲线均相切)的条数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某城市现有人口100万,根据最近20年的统计资料,这个城市的人口的年自然增长率为1.2%,按这个增长计算10年后这个城市的人口预计有(  )万.
A.y=100×0.01210B.y=100×(1+1.2%)10C.y=100×(1-1.2%)10D.y=100×1.210

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.当x∈[0,5]时,函数f(x)=3x2-4x+1的值域为[$-\frac{1}{3}$,56].

查看答案和解析>>

同步练习册答案