精英家教网 > 高中数学 > 题目详情
4.某企业打算在四个候选城市投资四个不同的项目,规定在同一个城市投资的项目不超过两个,则该企业不同的投资方案有(  )
A.204种B.96种C.240种D.384种

分析 根据题意,分3种情况讨论,①每个城市恰有一个项目,②有一个城市两个项目,另两个城市1个项目,③恰有两个城市,每个城市2个项目,分别计算其情况数目,进而由加法原理,计算可得答案.

解答 解:根据题意,要在4个候选城市投资4个不同的项目,且在同一个城市投资的项目不超过2个,
则分3种情况讨论,
每个城市恰有一个项目:A44=24.
有一个城市两个项目,另两个城市1个项目:C41C32A42=144.
恰有两个城市,每个城市2个项目:C42A42=72
共24+144+72=240种,
故选:C.

点评 本题考查排列、组合的综合应用,解题时,要根据题意,认真分析,根据“在同一个城市投资的项目不超过2个”的条件,确定分类讨论的依据.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.若logax<loga(x-$\frac{1}{2}$),则a∈(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=2x+$\frac{λ}{{2}^{x}}$(x∈R,λ∈R).
(1)讨论函数f(x)的奇偶性,并说明理由:
(2)当λ≥4时,判断函数g(x)=f(x)-μ(μ∈R)在x∈(-∞,1]上是否至多有一个零点?若是,请给予证明,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)的定义域为D,若存在闭区间[m,n]⊆D,使得函数f(x)满足:①f(x)在[m,n]上是单调函数;②f(2)在[m,n]上的值域为[2m,2n],则称区间[m,n]为y=f(x)的“倍值区间”,函数f(x)称为倍值函数.如函数f(x)=2x的倍值区间是[1,2].
(1)判断函数f(x)=3x是否是倍值区间(无须说明理由);
(2)求函数f(x)=x2(x≥0)的倍值区间;
(3)证明函数h(x)=loga($\frac{3}{4}$ax-$\frac{1}{8}$)是倍值函数,并求出倍值区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)=x2-bx+c,满足f(x)=f(2-x)且f(0)=3,则f(b-x)与f(c-x)的关系是(  )
A.f(b-x)≥f(c-xB.f(b-x)≤f(c-xC.f(b-x)>f(c-xD.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设函数$f(x)=\left\{\begin{array}{l}{x^2}+1,x≤1\\ \frac{2}{x},x>1\end{array}\right.$则f(f(4))=(  )
A.$\frac{1}{2}$B.2C.$\frac{3}{2}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.将二次函数y=x2的图象向左平移2个单位,再向下平移3个单位,得到的函数的解析式为(  )
A.y=x2+4x+7B.y=x2+4x+1C.y=x2-4x+7D.y=x2-4x-7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知某等差数列共有20项,其奇数项之和为15,偶数项之和为35,则其公差为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知A(-4,2,3)关于xoz平面的对称点为(-4,-2,3).

查看答案和解析>>

同步练习册答案