精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥中,底面为直角梯形,,过点作平面平行于平面,平面与棱分别相交于点.

(1)求的长度;

(2)求二面角的余弦值.

【答案】(1);(2).

【解析】试题分析:

(1)【法一】(由面面平行的性质定理可得

由相似三角形的性质计算可得

法二由面面平行的性质定理可得

由题意结合余弦定理可得.

(2)建立空间直角坐标系,由题意可得平面的法向量为,平面的法向量则二面角的余弦值.

试题解析:

(1)【法一】(Ⅰ)因为平面,平面平面

,平面平面,所以,同理

因为

所以,且

所以

同理

连接,则有

所以,所以,同理,

过点,则

法二】因为平面,平面平面,

平面平面

根据面面平行的性质定理,所以,同理

因为,所以,且,

又因为,所以

同理,

如图:作,

所以

故四边形为矩形,即,

,所以,所以.

(2)建立如图所示空间直角坐标系,

,设平面的法向量为,

,,得,

因为平面平面,所以平面的法向量

,二面角的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某中学随机选取了名男生,将他们的身高作为样本进行统计,得到如图所示的频率分布直方图,观察图中数据,完成下列问题.

)求的值及样本中男生身高在(单位:)的人数.

)假设用一组中的每个数据可用该组区间的中点值代替,通过样本估计该校全体男生的平均身高.

)在样本中,从身高在(单位:)内的男生中任选两人,求这两人的身高都不低于的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学为研究学生的身体素质与课外体育锻炼时间的关系,对该校200名高三学生平均每天课外体育锻炼时间进行调查,如表:(平均每天锻炼的时间单位:分钟)

平均每天锻炼的时间/分钟

总人数

20

36

44

50

40

10

将学生日均课外体育锻炼时间在的学生评价为“课外体育达标”.

(1)请根据上述表格中的统计数据填写下面的列联表;

课外体育不达标

课外体育达标

合计

20

110

合计

(2)通过计算判断是否能在犯错误的概率不超过的前提下认为“课外体育达标”性别有关?

参考公式,其中

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若以为左右焦点的椭圆经过点.

(1)求的标准方程

(2)设过右焦点且斜率为的动直线与相交于两点探究在轴上是否存在定点使得为定值若存在试求出定值和点的坐标若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,圆的参数方程为 (为参数),圆与圆外切于原点,且两圆圆心的距离,以坐标原点为极点, 轴正半轴为极轴建立极坐标系.

(1)求圆和圆的极坐标方程;

(2)过点的直线与圆异于点的交点分别为点,与圆异于点的交点分别为点,且,求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数.

(1)若处取到极小值,求的值及函数的单调区间;

(2)若当时, 恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,过且与圆相切的动圆圆心为.

(1)求点的轨迹的方程;

(2)设过点的直线交曲线两点,过点的直线交曲线两点,且,垂足为为不同的四个点).

①设,证明:

②求四边形的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (是常数),

(1)求函数的单调区间;

(2)当时,函数有零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若曲线与曲线在公共点处有共同的切线,求实数的值;

(Ⅱ)在(Ⅰ)的条件下,试问函数是否有零点?如果有,求出该零点;若没有,请说明理由.

查看答案和解析>>

同步练习册答案