精英家教网 > 高中数学 > 题目详情
(理)已知点是平面直角坐标系上的一个动点,点到直线的距离等于点到点的距离的2倍.记动点的轨迹为曲线.
(1)求曲线的方程;
(2)斜率为的直线与曲线交于两个不同点,若直线不过点,设直线的斜率分别为,求的数值;
(3)试问:是否存在一个定圆,与以动点为圆心,以为半径的圆相内切?若存在,求出这个定圆的方程;若不存在,说明理由.
(1);(2)0;(3)存在,定圆的方程为:.

试题分析:(1)本题是求方程问题,由于没有告诉我们是什么曲线,因此我们可根据已知条件采取直接法求方程,由已知可得,然后化简即可;(2)这是直线与圆锥曲线相交问题,解题方法是设直线方程为(注意,知道为什么吗?),与曲线方程联立方程组,并消去得到关于的二次方程,如果设,则可得(用表示),而
变形后表示成的式子,再把刚才的表达式代入计算应该就能得到结论;(3)假设存在这个定圆与动圆内切,则圆心距为两圆半径之差,从而与两圆中的某个圆的半径之和或差为定值(定圆的半径),由于点是椭圆的右焦点,这时联想椭圆的定义,若是椭圆的左焦点,则就有是常数,故定圆是以为圆心,4为半径的圆.
试题解析:(1)由题知,有.
化简,得曲线的方程:
(2)∵直线的斜率为,且不过点,
∴可设直线
联立方程组
又交点为


(3)答:一定存在满足题意的定圆.
理由:∵动圆与定圆相内切,
∴两圆的圆心之间距离与其中一个圆的半径之和或差必为定值.
恰好是曲线(椭圆)的右焦点,且是曲线上的动点,
记曲线的左焦点为,联想椭圆轨迹定义,有
∴若定圆的圆心与点重合,定圆的半径为4时,则定圆满足题意.
∴定圆的方程为:.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

椭圆的方程为,离心率为,且短轴一端点和两焦点构成的三角形面积为1,抛物线的方程为,抛物线的焦点F与椭圆的一个顶点重合.
(1)求椭圆和抛物线的方程;
(2)过点F的直线交抛物线于不同两点A,B,交y轴于点N,已知的值.
(3)直线交椭圆于不同两点P,Q,P,Q在x轴上的射影分别为P′,Q′,满足(O为原点),若点S满足,判定点S是否在椭圆上,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知是椭圆上两点,点的坐标为.
(1)当关于点对称时,求证:
(2)当直线经过点时,求证:不可能为等边三角形.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图F1.F2是椭圆: 与双曲线的公共焦点A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是(    )

A.     B.       C.        D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如果表示焦点在轴上的椭圆,那么实数的取值范围是(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

分别是椭圆的左、右焦点,点在椭圆上,线段的中点在轴上,若,则椭圆的离心率为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过椭圆的焦点垂直于轴的弦长为,则双曲线的离心率的值是(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆E:=1(a>b>0)的左焦点为F1,右焦点为F2,离心率e=.过F1的直线交椭圆于A、B两点,且△ABF2的周长为8.

(1)求椭圆E的方程;
(2)设动直线l:y=kx+m与椭圆E有且只有一个公共点P,且与直线x=4相交于点Q.试探究:在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,已知F是椭圆的左焦点,P是椭圆上一点,PF⊥x轴,OP∥AB(O为坐标原点),则该椭圆的离心率是(   )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案