四棱锥的侧面是等边三角形,平面,平面,,是棱的中点.
(1)求证:平面;
(2)求四棱锥的体积.
(1)见解析(2)
解析试题分析:(1)取AC中点M,连结FM、BM,
∵F是AD中点,∴FM∥DC,且FM=DC=1,
∵EB⊥平面ABC,DC⊥平面ABC,∴EB∥DC,∴FM∥EB.
又∵EB=1,∴FM=EB,
∴四边形BEFM是平行四边形,∴EF∥BM,
∵EF?平面ABC,BM?平面ABC,∴EF∥平面ABC.
(2)取BC中点N,连结AN,∵AB=AC,∴AN=BC,∵EB⊥平面ABC,∴AN⊥EB,
∵BC与EB是底面BCDE内的相交直线,∴AN⊥平面BCDE,
由(1)得,底面BCDE为直角梯形,S梯形BCDE==3,
在等边△ABC中,BC=2,∴AN=,∴V棱锥A-BCDE=S梯形BCDE·AN=.
考点:空间线面平行的判定定理及锥体体积公式
点评:题目较简单,学生易得分
科目:高中数学 来源: 题型:解答题
已知四棱锥P-ABCD的三视图和直观图如下:
(1)求四棱锥P-ABCD的体积;
(2) 若E是侧棱PC上的动点,是否不论点E在何位置,都有BD⊥AE?证明你的结论.
(3) 若F是侧棱PA上的动点,证明:不论点F在何位置,都不可能有BF⊥平面PAD。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分1 2分)
如图,四边形ABCD中,,AD∥BC,AD =6,BC =4,AB =2,点E、F分别在BC、AD上,EF∥AB.现将四边形ABEF沿EF折起,使平面ABCD平面EFDC,设AD中点为P.
( I )当E为BC中点时,求证:CP//平面ABEF
(Ⅱ)设BE=x,问当x为何值时,三棱锥A-CDF的体积有最大值?并求出这个最大值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
某建筑物的上半部分是多面体, 下半部分是长方体(如图). 该建筑物的正视图和侧视图(如图), 其中正(主)视图由正方形和等腰梯形组合而成,侧(左)视图由长方形和等腰三角形组合而成.
(Ⅰ)求直线与平面所成角的正弦值;
(Ⅱ)求二面角的余弦值;
(Ⅲ)求该建筑物的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分10分)如图,已知四棱锥底面为菱形,平面,,分别是、的中点.
(1)证明:
(2)设, 若为线段上的动点,与平面所成的最大角的正切值为
,求此时异面直线AE和CH所成的角.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题15分)如图,AC 是圆 O 的直径,点 B 在圆 O 上,∠BAC=30°,BM⊥AC交 AC 于点 M,EA⊥平面ABC,FC//EA,AC=4,EA=3,FC=1.
(I)证明:EM⊥BF;
(II)求平面 BEF 与平面ABC 所成锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题13分)在几何体ABCDE中,∠BAC= ,DC⊥平面ABC,EB⊥平面ABC,F是BC的中点,AB=AC=BE=2,CD=1.
(1)求证:DC∥平面ABE;
(2)求证:AF⊥平面BCDE;
(3)求几何体ABCDE的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com