精英家教网 > 高中数学 > 题目详情
1.函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)部分图象如图所示.
(Ⅰ)求f(x)的解析式及中心对称点;
(Ⅱ)设g(x)=f(x)-cos2x,求函数g(x)在区间$x∈[0,\frac{π}{2}]$上的最大值和最小值.

分析 (1)由函数图象观察可知A,函数的周期T=2($\frac{2π}{3}$-$\frac{π}{6}$)=π,由周期公式可得ω,由点($\frac{π}{6}$,2)在函数图象上,可得:2sin(2×$\frac{π}{6}$+φ)=2,解得φ=kπ+$\frac{π}{6}$,k∈Z结合范围|φ|≤$\frac{π}{2}$,即可求得φ的值,即可得解.
(2)由$x∈[0,\frac{π}{2}]$,可得2x-$\frac{π}{6}$∈[-$\frac{π}{6}$,$\frac{5π}{6}$],由正弦函数的性质可求g(x)=sin(2x-$\frac{π}{6}$)∈[-$\frac{1}{2}$,1],从而得解.

解答 解:(1)由函数图象观察可知:A=1…(1分),
函数的周期T=2($\frac{2π}{3}$-$\frac{π}{6}$)=π,由周期公式可得:ω=$\frac{2π}{π}$=2…(2分)
由点($\frac{π}{6}$,1)在函数图象上,可得:sin(2×$\frac{π}{6}$+φ)=1,可得:φ=kπ+$\frac{π}{6}$,k∈Z
∵|φ|≤$\frac{π}{2}$,
∴φ=$\frac{π}{6}$.…(4分)
∴f(x)的解析式为:f(x)=sin(2x+$\frac{π}{6}$).由2x+$\frac{π}{6}$=kπ,k∈Z可解得中心对称点为:($\frac{kπ}{2}-\frac{π}{12}$,0);…(6分)

(2)∵g(x)=f(x)-cos2x=sin(2x+$\frac{π}{6}$)-cos2x=sin(2x-$\frac{π}{6}$),
∵$x∈[0,\frac{π}{2}]$,2x-$\frac{π}{6}$∈[-$\frac{π}{6}$,$\frac{5π}{6}$],…(8分)
∴g(x)=sin(2x-$\frac{π}{6}$)∈[-$\frac{1}{2}$,1],
故函数g(x)在区间$x∈[0,\frac{π}{2}]$上的最大值为1,最小值-$\frac{1}{2}$.…(12分)

点评 本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,考查了正弦函数的图象和性质,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.(1)已知函数f(x)的定义域为(0,+∞),求 f(log${\;}_{\frac{1}{3}}$x)的定义域.
(2)求函数y=logx-1(3-x)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.有1,2,3,4,5,6,7,8,9九个数,其中含2,3,但他们不相邻的五位数有2520个.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设定义域为[x1,x2]的函数y=f(x)的图象的为C.图象的两个端点分别为A、B,点O为坐标原点,点M是C上任意一点,向量$\overrightarrow{OA}$=(x1,y1),$\overrightarrow{OB}$=(x2,y2),且满足x=λx1+(1-λ)x2(0<λ<1),又设向量$\overrightarrow{ON}$=λ$\overrightarrow{OA}$+(1-λ)$\overrightarrow{OB}$.现定义函数y=f(x)在[x1,x2]上“可在标准下线性近似”是指|$\overrightarrow{MN}$|≤k恒成立,其中k>0为常数.给出下列结论:
(1)A、B、N三点共线;
(2)直线MN的方向向量可以为$\overrightarrow{a}$=(0,1);
(3)函数y=5x2在[0,1]上“可在标准下线性近似”;
(4)若函数y=x-$\frac{1}{x}$在[1,2]上“可在标准下线性近似”,则k≥$\frac{3}{2}$-$\sqrt{2}$.
其中所有正确结论的序号是(1),(2),(4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数y=f(x)(x∈R)上任一点(x0,f(x0))处的切线斜率k=(x0-3)(x0+1)2,则该函数的单调递减区间为(  )
A.[-1,+∞)B.(-∞,3]C.(-∞,-1]D.[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.新津中学高二15班学生参加“六校”联考,其数学成绩(已折合成百分制)的频率分布直方图如图所示,其中成绩分布敬意为[40,50),[50,60),[60,70),[70,80),[80,90),[90,100],现已知成绩落在[90,100]的有5人.
(Ⅰ)求该班参加“六校”联考的总人数;
(Ⅱ)根据频率分布直方图,估计该班此次数学成绩的平均分(可用中值代替各组数据的平均值);
(Ⅲ)现要求从成绩在[40,50)和[90,100]的学生共选2人参加成绩分析会,求2人来自于同一分数段的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设f(x)=4cos(ωx-$\frac{π}{6})sinωx-cos(2ωx+π),其中ω$sinωx-cos(2ωx+π),其中ω>0.
(1)若最小正周期为π,求ω的值;
(2)在(1)的条件下,若不等式f(x)-m≥0对x∈$[{0,\frac{2π}{3}}]$都成立,求m的最大值.
(3)若f(x)在区间$[{-\frac{3π}{2},\frac{π}{2}}]$上为增函数,求ω的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知cos(α-55°)=-$\frac{1}{3}$,且α为第四象限角,求sin(α+125°)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.若数列{xn}满足条件x1=3,xn+1=$\frac{{x}_{n}^{2}+1}{{2x}_{n}}$,求数列{xn}的通项公式.

查看答案和解析>>

同步练习册答案