精英家教网 > 高中数学 > 题目详情
5.已知△ABC是边长为$2\sqrt{3}$的正三角形,EF为△ABC的外接圆o的一条直径,M为△ABC的边上的动点,则$\overrightarrow{ME}•\overrightarrow{MF}$的最小值为-3.

分析 建立平面直角坐标系,对点M的取值情况分在AB、BC和AC上三种情形进行讨论,再求其最小值即可.

解答 解:如图所示,以边AB所在直线为x轴,以其中点为坐标原点建立平面直角坐标系,
∵该正三角形ABC的边长为2$\sqrt{3}$,
∴A(-$\sqrt{3}$,0),B($\sqrt{3}$,0),C(0,3),
E(0,-1),F(0,3),
当点M在边AB上时,设点M(x0,0),则
-$\sqrt{3}$≤x0≤$\sqrt{3}$,$\overrightarrow{ME}$=(-x0,-1),
$\overrightarrow{MF}$=(x0,-3),
∴$\overrightarrow{ME}$•$\overrightarrow{MF}$=-x02+3,
∵-$\sqrt{3}$≤x0≤$\sqrt{3}$,
∴$\overrightarrow{ME}$•$\overrightarrow{MF}$的最小值为0;
当点M在边BC上时,
∵直线BC的斜率为-$\sqrt{3}$,
∴直线BC的方程为:$\sqrt{3}$x+y-3=0,
设点M(x0,3-$\sqrt{3}$x0),
则0≤x0≤$\sqrt{3}$,
∵$\overrightarrow{ME}$=(-x0,$\sqrt{3}$x0-4),$\overrightarrow{MF}$=(-x0,$\sqrt{3}$x0),
∴$\overrightarrow{ME}$•$\overrightarrow{MF}$=4x02-4$\sqrt{3}$x0
∵0≤x0≤$\sqrt{3}$,
∴$\overrightarrow{ME}$•$\overrightarrow{MF}$的最小值为-3,
当点M在边AC上时,
∵直线AC的斜率为$\sqrt{3}$,
∴直线AC的方程为:$\sqrt{3}$x-y+3=0,
设点M(x0,3+$\sqrt{3}$x0),则-$\sqrt{3}$≤x0≤0,
∵$\overrightarrow{ME}$=(-x0,-$\sqrt{3}$x0-4),$\overrightarrow{MF}$=(-x0,-$\sqrt{3}$x0),
∴$\overrightarrow{ME}$•$\overrightarrow{MF}$=4x02+4$\sqrt{3}$x0
∵-$\sqrt{3}$≤x0≤0,
∴$\overrightarrow{ME}$•$\overrightarrow{MF}$的最小值为-3,
综上,$\overrightarrow{ME}$•$\overrightarrow{MF}$的最小值为-3.
故答案为:-3.

点评 本题重点考查了平面向量的基本运算、数量积的运算性质等知识,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知函数$f(x)=\frac{ax}{{{x^2}+b}}$.
(1)求f'(x);
(2)设f(x)的图象在x=1处与直线y=2相切,求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.将一枚硬币连续投掷3次,则恰有连续2次出现正面朝上的概率是$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数y=loga(x-3)-1(a>0且a≠1)图象过定点P,当直线mx-ny-1=0(m>0,n>0)过点P时,则$\frac{1}{m}$+$\frac{1}{n}$的最小值为(  )
A.4B.2$\sqrt{2}$C.9D.18

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=Asin(ωx+ϕ)(A>0,ω>0,|ϕ|<π)图象的最高点D的坐标为$(\frac{π}{8},2)$,与点D相邻的最低点坐标为$(\frac{5π}{8},-2)$.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)求满足f(x)=1的实数x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.己知复数z=cosθ+isinθ(i是虚数单位),则$\frac{1+{z}^{2}}{z}$=(  )
A.cosθ+isinθB.2cosθC.2sinθD.isin2θ

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=x•ex-1,g(x)=lnx+kx,且f(x)≥g(x)对任意的x∈(0,+∞)恒成立,则实数k的最大值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=e-|x|+cosπx,给出下列命题:
①f(x)的最大值为2;
②f(x)在(-10,10)内的零点之和为0;
③f(x)的任何一个极大值都大于1.
其中,所有正确命题的序号是①②③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知向量$\overrightarrow{a}$=(cosα,sinα),$\overrightarrow{b}$=(-2,2).
(1)若$\overrightarrow{a}•\overrightarrow{b}$=$\frac{14}{5}$,求(sinα+cosα)2的值;
(2)若$\overrightarrow{a}∥\overrightarrow{b}$,求sin(π-α)•sin($\frac{π}{2}+α$)的值.

查看答案和解析>>

同步练习册答案